Vision-Based Self-Adaptive Gripping in a Trimodal Robotic Sorting End-Effector

机器人末端执行器 分类 机器人 过程(计算) 计算机科学 软件部署 工艺工程 人工智能 工程类 软件工程 操作系统 程序设计语言
作者
Rasoul Sadeghian,Shahrooz Shahin,Sina Sareh
出处
期刊:IEEE robotics and automation letters 卷期号:7 (2): 2124-2131 被引量:8
标识
DOI:10.1109/lra.2022.3140793
摘要

Recyclable waste management, which includes sorting as a key process, is a crucial component of maintaining a sustainable ecosystem. The use of robots in sorting could significantly facilitate the production of secondary raw materials from waste in the sense of a recycling economy. However, due to the complex and heterogeneous types of the recyclable items, the conventional robotic gripping end-effectors, which typically come with a fixed structure, are unlikely to hold onto the full range of items to enable separation and recycling. To this end, a trimodal adaptive end-effector is proposed that can be integrated with robotic manipulators to improve their gripping versatility. The end-effector can deploy effective modes of gripping to different objects in response to their size and porosity via gripping mechanisms based on Nano Polyurethane (PU) adhesive gels, pumpless vacuum suction, and radially deployable claws. While the end-effector's mechanical design allows the three gripping modes to be deployed independently or in conjunction with one another, this work aims at deploying modes that are effective for gripping onto the recyclable item. In order to decide on the suitable modes of gripping a real-time vision system is designed to measure the size and porosity of the recyclable items and advise on a suitable combination of gripping modes to be deployed. Integrated current sensors provide an indication of successful gripping and releasing of the recyclable items. The results of the experiments confirmed the ability of our vision-based approach in identifying suitable gripping modes in real-time, the deployment of the relevant mechanisms and successful gripping onto a maximum of 84.8% (single-mode), 90.9% (dual-mode) and 96.9% (triple-mode) of a specified set of recyclable items.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xlj730227完成签到 ,获得积分10
1秒前
你要学好完成签到 ,获得积分10
2秒前
直率书包完成签到,获得积分10
2秒前
八卦巧克力完成签到,获得积分10
4秒前
WFLLL发布了新的文献求助10
6秒前
哈哈发布了新的文献求助10
6秒前
顾矜应助福桃采纳,获得10
7秒前
Zziiixl完成签到,获得积分10
9秒前
欢喜小蚂蚁完成签到 ,获得积分10
11秒前
海城好人完成签到,获得积分10
12秒前
彭于晏应助mao采纳,获得10
12秒前
14秒前
0713完成签到,获得积分10
17秒前
19秒前
期待未来的自己应助yy采纳,获得10
20秒前
21秒前
Ava应助忧郁嚣采纳,获得10
24秒前
kunkun应助含蓄小小采纳,获得30
25秒前
sasa完成签到 ,获得积分10
25秒前
苏苏苏发布了新的文献求助10
26秒前
小马甲应助tom81882采纳,获得10
28秒前
WFLLL发布了新的文献求助10
30秒前
lzl008完成签到 ,获得积分10
30秒前
ding应助魔幻的紫霜采纳,获得10
30秒前
31秒前
朴实雨竹完成签到,获得积分10
32秒前
32秒前
szz完成签到,获得积分10
32秒前
32秒前
水水发布了新的文献求助10
32秒前
NexusExplorer应助个性湘采纳,获得10
32秒前
33秒前
33秒前
zj发布了新的文献求助10
34秒前
35秒前
wanci应助苏苏苏采纳,获得10
35秒前
科研通AI2S应助yy采纳,获得10
36秒前
忧郁嚣发布了新的文献求助10
36秒前
魔幻的紫霜完成签到,获得积分10
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845754
求助须知:如何正确求助?哪些是违规求助? 3388139
关于积分的说明 10551814
捐赠科研通 3108775
什么是DOI,文献DOI怎么找? 1713076
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774908