碳纤维
水溶液
离子
溶解
量子点
电化学
锰
材料科学
化学工程
三元运算
复合数
歧化
阴极
无机化学
纳米技术
电极
化学
复合材料
冶金
催化作用
物理化学
有机化学
计算机科学
工程类
程序设计语言
生物化学
作者
Shenzhen Deng,Zhiwei Tie,Yue Fang,Hongmei Cao,Minjie Yao,Zhiqiang Niu
标识
DOI:10.1002/ange.202115877
摘要
Abstract Manganese oxides are promising cathode materials for aqueous zinc‐ion batteries (ZIBs) due to their high energy density and low cost. However, in their discharging processes, the Jahn–Teller effect and Mn 3+ disproportionation often lead to irreversible structural transformation and Mn 2+ dissolution, deteriorating the cycling stability of ZIBs. Herein, ZnMn 2 O 4 quantum dots (ZMO QDs) were introduced into a porous carbon framework by in‐situ electrochemically inducing Mn‐MIL‐100‐derived Mn 3 O 4 quantum dots and the carbon composite. In such ZMO QDs and carbon composite, the quantum dot structure endows ZnMn 2 O 4 with a shorter ion diffusion route and more active sites for Zn 2+ . The conductive carbon framework is beneficial to the fast transport of electrons. Furthermore, at the interface between the ZMO QDs and the carbon matrix, the Mn−O−C bonds are formed. They can effectively suppress the Jahn–Teller effect and manganese dissolution of discharge products. Therefore, Zn/ZMO QD@C batteries display remarkably enhanced electrochemical performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI