空中骑兵
立方晶系
纳米线
刻面
材料科学
凝聚态物理
晶体结构
透射电子显微镜
化学气相沉积
纳米技术
结晶学
化学
物理
作者
Matthew J. Stolt,Zi‐An Li,Brandon Phillips,Dongsheng Song,Nitish Mathur,Rafal E. Dunin‐Borkowski,Song Jin
出处
期刊:Nano Letters
[American Chemical Society]
日期:2016-12-13
卷期号:17 (1): 508-514
被引量:34
标识
DOI:10.1021/acs.nanolett.6b04548
摘要
Magnetic skyrmions are topologically stable vortex-like spin structures that are promising for next generation information storage applications. Materials that host magnetic skyrmions, such as MnSi and FeGe with the noncentrosymmetric cubic B20 crystal structure, have been shown to stabilize skyrmions upon nanostructuring. Here, we report a chemical vapor deposition method to selectively grow nanowires (NWs) of cubic FeGe out of three possible FeGe polymorphs for the first time using finely ground particles of cubic FeGe as seeds. X-ray diffraction and transmission electron microscopy (TEM) confirm that these micron-length NWs with ∼100 nm to 1 μm diameters have the cubic B20 crystal structure. Although Fe13Ge8 NWs are also formed, the two types of NWs can be readily differentiated by their faceting. Lorentz TEM imaging of the cubic FeGe NWs reveals a skyrmion lattice phase under small applied magnetic fields (∼0.1 T) at 233 K, a skyrmion chain state at lower temperatures (95 K) and under high magnetic fields (∼0.4 T), and a larger skyrmion stability window than bulk FeGe. This synthetic approach to cubic FeGe NWs that support stabilized skyrmions opens a route toward the exploration of new skyrmion physics and devices based on similar nanostructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI