超临界流体
数学
非线性系统
非线性薛定谔方程
色散(光学)
临界质量(社会动力学)
数学物理
数学分析
应用数学
统计物理学
薛定谔方程
热力学
物理
量子力学
社会科学
社会学
作者
Denis Bonheure,Jean-Baptiste Castéras,Tianxiang Gou,Louis Jeanjean
摘要
In this paper, we study the existence of solutions to the mixed dispersion nonlinear Schrödinger equation \[ γ Δ 2 u − Δ u + α u = | u | 2 σ u , u ∈ H 2 ( R N ) , \gamma \Delta ^2 u -\Delta u + \alpha u=|u|^{2 \sigma } u, \qquad u \in H^2({\mathbb {R}}^N), \] under the constraint \[ ∫ R N | u | 2 d x = c > 0. \int _{{\mathbb {R}}^N}|u|^2 \, dx =c>0. \] We assume that γ > 0 , N ≥ 1 , 4 ≤ σ N > 4 N ( N − 4 ) + \gamma >0, N \geq 1, 4 \leq \sigma N > \frac {4N}{(N-4)^+} , whereas the parameter α ∈ R \alpha \in {\mathbb {R}} will appear as a Lagrange multiplier. Given c ∈ R + c \in {\mathbb {R}}^+ , we consider several questions including the existence of ground states and of positive solutions and the multiplicity of radial solutions. We also discuss the stability of the standing waves of the associated dispersive equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI