已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?

对比度(视觉) 磁共振成像 医学 对比度增强 核医学 磁共振弥散成像 放射科 计算机科学 人工智能 材料科学 冶金
作者
Jens Kleesiek,Jan Nikolas Morshuis,Fabian Isensee,Katerina Deike‐Hofmann,Daniel Paech,Philipp Kickingereder,Ullrich Köthe,Carsten Rother,Michael Forsting,Wolfgang Wick,Martin Bendszus,Heinz‐Peter Schlemmer,Alexander Radbruch
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (10): 653-660 被引量:131
标识
DOI:10.1097/rli.0000000000000583
摘要

Objectives Gadolinium-based contrast agents (GBCAs) have become an integral part in daily clinical decision making in the last 3 decades. However, there is a broad consensus that GBCAs should be exclusively used if no contrast-free magnetic resonance imaging (MRI) technique is available to reduce the amount of applied GBCAs in patients. In the current study, we investigate the possibility of predicting contrast enhancement from noncontrast multiparametric brain MRI scans using a deep-learning (DL) architecture. Materials and Methods A Bayesian DL architecture for the prediction of virtual contrast enhancement was developed using 10-channel multiparametric MRI data acquired before GBCA application. The model was quantitatively and qualitatively evaluated on 116 data sets from glioma patients and healthy subjects by comparing the virtual contrast enhancement maps to the ground truth contrast-enhanced T1-weighted imaging. Subjects were split in 3 different groups: enhancing tumors (n = 47), nonenhancing tumors (n = 39), and patients without pathologic changes (n = 30). The tumor regions were segmented for a detailed analysis of subregions. The influence of the different MRI sequences was determined. Results Quantitative results of the virtual contrast enhancement yielded a sensitivity of 91.8% and a specificity of 91.2%. T2-weighted imaging, followed by diffusion-weighted imaging, was the most influential sequence for the prediction of virtual contrast enhancement. Analysis of the whole brain showed a mean area under the curve of 0.969 ± 0.019, a peak signal-to-noise ratio of 22.967 ± 1.162 dB, and a structural similarity index of 0.872 ± 0.031. Enhancing and nonenhancing tumor subregions performed worse (except for the peak signal-to-noise ratio of the nonenhancing tumors). The qualitative evaluation by 2 raters using a 4-point Likert scale showed good to excellent (3–4) results for 91.5% of the enhancing and 92.3% of the nonenhancing gliomas. However, despite the good scores and ratings, there were visual deviations between the virtual contrast maps and the ground truth, including a more blurry, less nodular-like ring enhancement, few low-contrast false-positive enhancements of nonenhancing gliomas, and a tendency to omit smaller vessels. These “features” were also exploited by 2 trained radiologists when performing a Turing test, allowing them to discriminate between real and virtual contrast-enhanced images in 80% and 90% of the cases, respectively. Conclusions The introduced model for virtual gadolinium enhancement demonstrates a very good quantitative and qualitative performance. Future systematic studies in larger patient collectives with varying neurological disorders need to evaluate if the introduced virtual contrast enhancement might reduce GBCA exposure in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paper发布了新的文献求助10
4秒前
姚友进发布了新的文献求助20
4秒前
踏实初雪完成签到,获得积分10
4秒前
再见当套7完成签到,获得积分10
5秒前
林中逐梦完成签到,获得积分10
5秒前
dahai完成签到,获得积分10
5秒前
6秒前
Ava应助故意的鸿涛采纳,获得10
6秒前
领导范儿应助hyodong采纳,获得10
7秒前
dsa发布了新的文献求助10
8秒前
聪慧的大娘完成签到,获得积分20
9秒前
10秒前
10秒前
dahai发布了新的文献求助30
10秒前
11秒前
哈哈发布了新的文献求助30
14秒前
14秒前
15秒前
yyh发布了新的文献求助10
15秒前
Maestro_S应助是木易呀采纳,获得20
16秒前
HXXSWA发布了新的文献求助10
16秒前
传奇3应助明理初之采纳,获得10
16秒前
周星星完成签到 ,获得积分10
16秒前
Orange应助早安采纳,获得10
16秒前
赘婿应助单纯的云朵采纳,获得10
17秒前
18秒前
乐观的颦发布了新的文献求助10
19秒前
20秒前
今后应助yyh采纳,获得10
20秒前
hyodong发布了新的文献求助10
20秒前
21秒前
22秒前
852应助科研通管家采纳,获得10
23秒前
Demon应助科研通管家采纳,获得10
23秒前
Demon应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
23秒前
乐乐应助xiuxiu采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得30
23秒前
浮游应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322677
求助须知:如何正确求助?哪些是违规求助? 4464086
关于积分的说明 13892255
捐赠科研通 4355463
什么是DOI,文献DOI怎么找? 2392359
邀请新用户注册赠送积分活动 1385998
关于科研通互助平台的介绍 1355765