化学
过电位
析氧
电催化剂
镍
活动站点
金属
氧气
分解水
无机化学
密度泛函理论
催化作用
物理化学
计算化学
电化学
电极
光催化
有机化学
作者
John Mark P. Martirez,Emily A. Carter
摘要
The active site for electrocatalytic water oxidation on the highly active iron(Fe)-doped β-nickel oxyhydroxide (β-NiOOH) electrocatalyst is hotly debated. Here we characterize the oxygen evolution reaction (OER) activity of an unexplored facet of this material with first-principles quantum mechanics. We show that molecular-like 4-fold-lattice-oxygen-coordinated metal sites on the (1̅21̅1) surface may very well be the key active sites in the electrocatalysis. The predicted OER overpotential (ηOER) for a Fe-centered pathway is reduced by 0.34 V relative to a Ni-centered one, consistent with experiments. We further predict unprecedented, near-quantitative lower bounds for the ηOER, of 0.48 and 0.14 V for pure and Fe-doped β-NiOOH(1̅21̅1), respectively. Our hybrid density functional theory calculations favor a heretofore unpredicted pathway involving an iron(IV)-oxo species, Fe4+=O. We posit that an iron(IV)-oxo intermediate that stably forms under a low-coordination environment and the favorable discharge of Ni3+ to Ni2+ are key to β-NiOOH's OER activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI