Learning Probabilistic Awareness Models for Detecting Abnormalities in Vehicle Motions

概率逻辑 计算机科学 人工智能
作者
Damian Campo,Mohamad Baydoun,Pablo García Marín,David Martín,Lucio Marcenaro,Arturo de la Escalera,Carlo S. Regazzoni
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 1308-1320 被引量:13
标识
DOI:10.1109/tits.2019.2909980
摘要

This paper proposes a method to detect abnormal motions in real vehicle situations based on trajectory data. Our approach uses a Gaussian process (GP) regression that facilitates to approximate expected vehicle’s movements over a whole environment based on sparse observed data. The main contribution of this paper consists in decomposing the GP regression into spatial zones, where quasi-constant velocity models are valid. Such obtained models are employed to build a set of Kalman filters that encode observed vehicle’s dynamics. This paper shows how proposed filters enable the online identification of abnormal motions. Detected abnormalities can be modeled and learned incrementally, automatically by intelligent systems. The proposed methodology is tested on real data produced by a vehicle that interacts with pedestrians in a closed environment. Automatic detection of abnormal motions benefits the traffic scene understanding and facilitates to close the gap between human driving and autonomous vehicle awareness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
yao发布了新的文献求助10
3秒前
赵李锋发布了新的文献求助10
4秒前
4秒前
阿九发布了新的文献求助10
4秒前
6秒前
吴律发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
顾矜应助demon采纳,获得10
10秒前
qi发布了新的文献求助30
11秒前
koi完成签到,获得积分10
12秒前
12秒前
13秒前
zzn发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
min发布了新的文献求助10
14秒前
15秒前
闫思宇发布了新的文献求助10
15秒前
浮游应助科研通管家采纳,获得10
16秒前
xll发布了新的文献求助10
16秒前
唐泽雪穗应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得50
16秒前
Akim应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
今后应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208035
求助须知:如何正确求助?哪些是违规求助? 4385800
关于积分的说明 13658380
捐赠科研通 4244557
什么是DOI,文献DOI怎么找? 2328881
邀请新用户注册赠送积分活动 1326584
关于科研通互助平台的介绍 1278735