计算机科学
任务(项目管理)
过程(计算)
代表(政治)
人工智能
点(几何)
功能(生物学)
时间点
深度学习
点过程
机器学习
数据挖掘
美学
统计
操作系统
进化生物学
生物
哲学
数学
经济
管理
法学
政治学
政治
几何学
作者
Wenwei Liang,Wei Zhang,Xiaoling Wang
标识
DOI:10.1007/978-3-030-18590-9_44
摘要
In this paper, we address the problem of next check-in time and location prediction, and propose a deep sequential multi-task model, named Personalized Recurrent Point Process with Attention (PRPPA), which seamlessly integrates user static representation learning, dynamic recent check-in behavior modeling, and temporal point process into a unified architecture. An attention mechanism is further included in the intensity function of point process to enhance the capability of explicitly capturing the effect of past check-in events. Through the experiments, we verify the proposed model is effective in location and time prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI