已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma

医学 无线电技术 多参数磁共振成像 甲状腺癌 放射科 甲状腺 癌症 内科学 前列腺癌
作者
Hao Wang,Bin Song,Ningrong Ye,Jiliang Ren,Xilin Sun,Zedong Dai,Yuan Zhang,Bihong T. Chen
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:122: 108755-108755 被引量:79
标识
DOI:10.1016/j.ejrad.2019.108755
摘要

Purpose To investigate the predictive capability of machine learning-based multiparametric magnetic resonance (MR) imaging radiomics for evaluating the aggressiveness of papillary thyroid carcinoma (PTC) preoperatively. Methods This prospective study enrolled consecutive patients who underwent neck MR scans and subsequent thyroidectomy during the study interval. The diagnosis and aggressiveness of PTC were determined by pathological evaluation of thyroidectomy specimens. Thyroid nodules were segmented manually on the MR images, and radiomic features were then extracted. Predictive machine learning modelling was used to evaluate the prediction of PTC aggressiveness. Area under the receiver operating characteristic curve (AUC) values for the model performance were obtained for radiomic features, clinical characteristics, and combinations of radiomic features and clinical characteristics. Results The study cohort included 120 patients with pathology-confirmed PTC (training cohort: n = 96; testing cohort: n = 24). A total of 1393 features were extracted from T2-weighted, apparent diffusion coefficient (ADC) and contrast-enhanced T1-weighted MR images for each patient. The combination of Least Absolute Shrinkage and Selection Operator for radiomic feature selection and Gradient Boosting Classifier for classifying PTC aggressiveness achieving the AUC of 0.92. In contrast, clinical characteristics alone poorly predicted PTC aggressiveness, with an AUC of 0.56. Conclusions Our study showed that machine learning-based multiparametric MR imaging radiomics could accurately distinguish aggressive from non-aggressive PTC preoperatively. This approach may be helpful for informing treatment strategies and prognosis of patients with aggressive PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳的语雪完成签到 ,获得积分10
1秒前
qvb发布了新的文献求助10
1秒前
2秒前
nn发布了新的文献求助10
3秒前
ceeray23发布了新的文献求助20
3秒前
3秒前
4秒前
4秒前
打打应助farsh采纳,获得10
4秒前
研友_VZG7GZ应助朴实小甜瓜采纳,获得10
6秒前
7秒前
踏实的傲白完成签到 ,获得积分10
7秒前
wanci应助MissZhang采纳,获得30
8秒前
可靠F发布了新的文献求助10
8秒前
hyf完成签到,获得积分10
9秒前
嘉up发布了新的文献求助10
10秒前
10秒前
peipei完成签到,获得积分20
10秒前
11秒前
gao发布了新的文献求助10
11秒前
song11完成签到,获得积分20
13秒前
番茄豆丁完成签到 ,获得积分10
13秒前
cndxh发布了新的文献求助10
14秒前
15秒前
18秒前
心心子完成签到 ,获得积分10
19秒前
20秒前
Owen应助健壮的夕阳采纳,获得10
21秒前
战战发布了新的文献求助10
21秒前
21秒前
cndxh完成签到,获得积分10
22秒前
英俊的铭应助心机之蛙采纳,获得10
22秒前
謓言完成签到,获得积分10
23秒前
24秒前
FJ发布了新的文献求助10
24秒前
我是老大应助亓熙采纳,获得10
24秒前
鲤鱼幻枫完成签到,获得积分10
24秒前
小二郎应助洛子蓁采纳,获得30
25秒前
尽荠麦完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330