无定形固体
材料科学
电解质
溶剂
化学工程
氧化物
电阻率和电导率
复合数
聚氧化乙烯
快离子导体
离子电导率
电导率
无机化学
结晶学
有机化学
化学
聚合物
复合材料
物理化学
电极
物理
冶金
工程类
量子力学
作者
Ethan C. Self,Zachary D. Hood,Teerth Brahmbhatt,Frank M. Delnick,Harry M. Meyer,Guang Yang,Jennifer L. M. Rupp,Jagjit Nanda
标识
DOI:10.1021/acs.chemmater.0c01990
摘要
Solvent-mediated routes have emerged as an effective, scalable, and low-temperature method to fabricate sulfide-based solid-state electrolytes. However, tuning the synthesis conditions to optimize the electrolyte’s morphology, structure, and electrochemical properties is still underexplored. Here, we report a new class of composite solid electrolytes (SEs) containing amorphous Li<sub>3</sub>PS<sub>4</sub> synthesized in situ with a poly(ethylene oxide) (PEO) binder using a one-pot, solvent-mediated route. The solvent and thermal processing conditions have a dramatic impact on the Li<sub>3</sub>PS<sub>4</sub> structure. Conducting the synthesis in tetrahydrofuran resulted in crystalline β-Li<sub>3</sub>PS<sub>4</sub> whereas acetonitrile led to amorphous Li<sub>3</sub>PS<sub>4</sub>. Annealing at 140 °C increased the Li<sup>+</sup> conductivity of an amorphous composite (Li<sub>3</sub>PS<sub>4</sub> + 1 wt % PEO) by 3 orders of magnitude (e.g., from 4.5 × 10<sup>–9</sup> to 8.4 × 10<sup>–6</sup> S/cm at room temperature) because of: (i) removal of coordinated solvent and (ii) rearrangement of the polyanionic network to form P<sub>2</sub>S<sub>7</sub><sup>4–</sup> and PS<sub>4</sub><sup>3–</sup> moieties. The PEO content in these composites should be limited to 1–5 wt % to ensure reasonable Li+ conductivity (e.g., up to 1.1 × 10<sup>–4</sup> S/cm at 80 °C) while providing enough binder to facilitate scalable processing. Here, the results of this study highlight a new strategy to suppress crystallization in sulfide-based SEs, which has important implications for solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI