A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre

视网膜 医学 疾病 心脏病学 生物医学工程 内科学 眼科
作者
Carol Y. Cheung,Dejiang Xu,Ching‐Yu Cheng,Charumathi Sabanayagam,Yih‐Chung Tham,Marco Yu,Tyler Hyungtaek Rim,Chew Yian Chai,Bamini Gopinath,Paul Mitchell,Richie Poulton,Terrie E. Moffitt,Avshalom Caspi,Jason C. Yam,Clement C. Tham,Jost B. Jonas,Ya Xing Wang,Su Jeong Song,Louise M. Burrell,Omar Farouque
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:5 (6): 498-508 被引量:212
标识
DOI:10.1038/s41551-020-00626-4
摘要

Retinal blood vessels provide information on the risk of cardiovascular disease (CVD). Here, we report the development and validation of deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs, using diverse multiethnic multicountry datasets that comprise more than 70,000 images. Retinal-vessel calibre measured by the models and by expert human graders showed high agreement, with overall intraclass correlation coefficients of between 0.82 and 0.95. The models performed comparably to or better than expert graders in associations between measurements of retinal-vessel calibre and CVD risk factors, including blood pressure, body-mass index, total cholesterol and glycated-haemoglobin levels. In retrospectively measured prospective datasets from a population-based study, baseline measurements performed by the deep-learning system were associated with incident CVD. Our findings motivate the development of clinically applicable explainable end-to-end deep-learning systems for the prediction of CVD on the basis of the features of retinal vessels in retinal photographs. Deep-learning models for the automated measurement of retinal-vessel calibre in retinal photographs perform comparably to or better than expert graders in associations of measurements of retinal-vessel calibre with cardiovascular risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tramp应助luanzh采纳,获得10
1秒前
可可完成签到,获得积分10
1秒前
小井盖完成签到 ,获得积分10
1秒前
LANGYE发布了新的文献求助10
1秒前
思源应助hui采纳,获得10
1秒前
可爱的函函应助Benjamin采纳,获得10
1秒前
zyj完成签到 ,获得积分10
2秒前
阿曼尼完成签到 ,获得积分10
2秒前
0.5地板砖完成签到,获得积分10
3秒前
北海qy完成签到,获得积分10
3秒前
3秒前
Wang完成签到,获得积分10
3秒前
眇鱼完成签到 ,获得积分10
3秒前
Kunying发布了新的文献求助50
3秒前
Dannerys完成签到 ,获得积分10
3秒前
小柠檬完成签到,获得积分20
4秒前
tramp应助HAO采纳,获得10
4秒前
tramp应助书晨采纳,获得10
5秒前
popo完成签到,获得积分10
5秒前
5秒前
wds2023完成签到 ,获得积分10
5秒前
luanzh完成签到,获得积分20
6秒前
十里长亭发布了新的文献求助10
7秒前
白月当归完成签到,获得积分10
8秒前
火火完成签到,获得积分10
8秒前
冷酷莫言发布了新的文献求助10
8秒前
bucmegg发布了新的文献求助10
9秒前
lalala完成签到,获得积分10
10秒前
10秒前
伊诺完成签到,获得积分10
10秒前
10秒前
整齐的灭绝完成签到 ,获得积分10
10秒前
Ranrunn完成签到,获得积分10
10秒前
10秒前
大树完成签到 ,获得积分10
11秒前
不知道取啥名完成签到 ,获得积分10
11秒前
淡然紫蓝应助李健采纳,获得10
12秒前
1111发布了新的文献求助10
13秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781