Key role of antibonding electron transfer in bonding on solid surfaces

反键分子轨道 化学物理 材料科学 化学键 半导体 费米能级 电子转移 Atom(片上系统) 电子 原子物理学 原子轨道 物理化学 化学 物理 量子力学 光电子学 计算机科学 嵌入式系统
作者
Liping Yu,Qimin Yan,Adrienn Ruzsinszky
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:3 (9) 被引量:21
标识
DOI:10.1103/physrevmaterials.3.092801
摘要

The description of the chemical bond between a solid surface and an atom or a molecule is the fundamental basis for understanding a broad range of scientific problems in heterogeneous catalysis, semiconductor device fabrication, and fuel cells. Widespread understandings are based on the molecular orbital theory and focused on the degree of filling of antibonding surface-adsorbate states that weaken bonding on surfaces. The unoccupied antibonding surface-adsorbate states are often tacitly assumed to be irrelevant. Here, we show that the unoccupancy of those antibonding surface-adsorbate states is related to antibonding electron transfer: Electrons that would occupy these antibonding states are transferred to the lower-energy Fermi level. This antibonding electron transfer leads to an energy gain, which plays a critically important role in controlling the trends of bond formation on surfaces that are often inhomogeneous and defective. This finding is illustrated from the first-principles study of hydrogen adsorption on ${\mathrm{MoS}}_{2}$ surfaces. A clear linear relationship between the energies of antibonding electron transfer and hydrogen adsorption is identified. Active sites of hydrogen evolution reaction on ${\mathrm{MoS}}_{2}$ are found to originate from the in-gap states induced by sulfur vacancies or edges. The emerging picture is general and suited for both metal and semiconductor surfaces. It also offers a physically different explanation for the well-known $d$-band model for hydrogen adsorption on transition-metal surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hatt完成签到 ,获得积分10
2秒前
李建科完成签到,获得积分10
2秒前
3秒前
略lue完成签到,获得积分20
3秒前
羊了个羊发布了新的文献求助10
3秒前
4秒前
ArthurC发布了新的文献求助10
4秒前
5秒前
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
SOLOMON应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得30
7秒前
思源应助科研通管家采纳,获得10
7秒前
情怀应助Alice采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
weeson发布了新的文献求助10
7秒前
shinysparrow应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
Owen应助科研通管家采纳,获得10
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
完美世界应助YAOYAO采纳,获得10
10秒前
外向路灯发布了新的文献求助10
11秒前
Akim应助Kenny采纳,获得30
13秒前
健壮豌豆发布了新的文献求助10
13秒前
ourWorks发布了新的文献求助10
14秒前
Boketto完成签到,获得积分10
14秒前
14秒前
阿巴完成签到 ,获得积分10
14秒前
15秒前
biubiubiu完成签到,获得积分20
16秒前
小森完成签到,获得积分10
17秒前
木木发布了新的文献求助10
17秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 300
Transformerboard III 300
GraphPad Prism科技绘图与数据分析 200
From Structure to Information in Sensory Systems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2358790
求助须知:如何正确求助?哪些是违规求助? 2066140
关于积分的说明 5159884
捐赠科研通 1795210
什么是DOI,文献DOI怎么找? 896579
版权声明 557587
科研通“疑难数据库(出版商)”最低求助积分说明 478543