Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: a feasibility study

医学 磁共振成像 乳腺癌 乳房磁振造影 核医学 放射科 磁共振弥散成像 无线电技术 图像增强 核磁共振 人工智能 磁共振弥散加权成像 模式识别(心理学) 癌症 乳腺摄影术 医学物理学 乳房成像 生物医学工程 钆DTPA 图像处理 癌症影像学 计算机视觉 乳腺组织
作者
Qinglin Wang,Ning Mao,Meijie Liu,Ying‐Hong Shi,Heng Ma,Jianjun Dong,Xuexi Zhang,Shaofeng Duan,Wang Bin,Haizhu Xie
出处
期刊:Clinical Imaging [Elsevier BV]
卷期号:72: 136-141 被引量:21
标识
DOI:10.1016/j.clinimag.2020.11.024
摘要

Abstract

Purpose

This work aimed to explore whether radiomic features on magnetic resonance diffusion weighted image (MR DWI) can be used to identify triple-negative breast cancer (TNBC) and other subtypes (non-TNBC).

Materials and methods

This retrospective study included 221 unilateral patients who underwent breast MR imaging prior to neoadjuvant chemotherapy. The subtypes of breast cancer include luminal A (n = 63), luminal B (n = 103), human epidermal growth factor receptor-2 (HER2) overexpressing (n = 30), and triple negative (n = 25). Radiomic features were extracted using Omini-Kinetic software on DWI. Student's t-test and Mann–Whitney U test were used to compare the features between TNBC and non-TNBC patients. Logistic regression analysis and receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficiency of radiomic features. The Fisher discriminant model was employed to distinguish TNBC and non-TNBC patients automatically. An additional validation dataset with 169 patients was utilized to validate the model.

Results

A total of 76 imaging features were extracted from each lesion on DWI images, and 12 radiomic features were statistically significant between TNBC and non-TNBC patients (P < 0.05). The area of receiver operating characteristic curve (AUC) was 0.817 to apply logistic regression analysis. The accuracy of Fisher discriminant model in distinguishing TNBC and non-TNBC patients was 95.4%, and leave-one-out cross validation was achieved with an accuracy of 83.7%. The same classification analysis of the validation dataset showed an accuracy of 83.4% and an AUC of 0.804.

Conclusion

Breast lesions exhibit differences in radiomic features from DWI, enabling good discrimination between TNBC and non-TNBC tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温煦发布了新的文献求助10
刚刚
吕小软完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
2秒前
2秒前
YuxinChen发布了新的文献求助10
2秒前
3秒前
tzy完成签到,获得积分10
3秒前
霜白完成签到,获得积分10
4秒前
陆莹完成签到,获得积分10
4秒前
112完成签到,获得积分10
4秒前
灶鲜森发布了新的文献求助10
4秒前
所所应助SUnnnnn采纳,获得10
5秒前
baiye发布了新的文献求助10
6秒前
ahuyv完成签到,获得积分10
6秒前
毓毓发布了新的文献求助10
7秒前
归海亦云完成签到,获得积分20
7秒前
8秒前
10秒前
10秒前
所所应助hbhbj采纳,获得10
12秒前
hj456完成签到,获得积分10
12秒前
13秒前
Ava应助爱听歌的悒采纳,获得10
15秒前
酷波er应助黄梓同采纳,获得10
15秒前
ejonlove发布了新的文献求助30
16秒前
sam发布了新的文献求助50
17秒前
bo完成签到,获得积分10
18秒前
18秒前
20秒前
21秒前
Yang完成签到,获得积分10
21秒前
浮游应助hbhbj采纳,获得10
22秒前
22秒前
23秒前
浮游应助hbhbj采纳,获得10
24秒前
Lucas应助夜白采纳,获得10
24秒前
酷波er应助哈哈哈哈哈哈采纳,获得10
25秒前
Cwin完成签到 ,获得积分10
25秒前
25秒前
CC完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306416
求助须知:如何正确求助?哪些是违规求助? 4452285
关于积分的说明 13854176
捐赠科研通 4339713
什么是DOI,文献DOI怎么找? 2382823
邀请新用户注册赠送积分活动 1377697
关于科研通互助平台的介绍 1345355