MORSE: MultimOdal sentiment analysis for Real-life SEttings

计算机科学 情绪分析 模式 人工智能 学习迁移 机器学习 变压器 模态(人机交互) 模式识别(心理学) 自然语言处理 电压 社会学 量子力学 物理 社会科学
作者
Yiqun Yao,Verónica Pérez‐Rosas,Mohamed Abouelenien,Mihai Burzo
标识
DOI:10.1145/3382507.3418821
摘要

Multimodal sentiment analysis aims to detect and classify sentiment expressed in multimodal data. Research to date has focused on datasets with a large number of training samples, manual transcriptions, and nearly-balanced sentiment labels. However, data collection in real settings often leads to small datasets with noisy transcriptions and imbalanced label distributions, which are therefore significantly more challenging than in controlled settings. In this work, we introduce MORSE, a domain-specific dataset for MultimOdal sentiment analysis in Real-life SEttings. The dataset consists of 2,787 video clips extracted from 49 interviews with panelists in a product usage study, with each clip annotated for positive, negative, or neutral sentiment. The characteristics of MORSE include noisy transcriptions from raw videos, naturally imbalanced label distribution, and scarcity of minority labels. To address the challenging real-life settings in MORSE, we propose a novel two-step fine-tuning method for multimodal sentiment classification using transfer learning and the Transformer model architecture; our method starts with a pre-trained language model and one step of fine-tuning on the language modality, followed by the second step of joint fine-tuning that incorporates the visual and audio modalities. Experimental results show that while MORSE is challenging for various baseline models such as SVM and Transformer, our two-step fine-tuning method is able to capture the dataset characteristics and effectively address the challenges. Our method outperforms related work that uses both single and multiple modalities in the same transfer learning settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HYD发布了新的文献求助10
1秒前
1秒前
1秒前
welcomeS发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
浮晨完成签到,获得积分10
4秒前
搜集达人应助eureka采纳,获得10
4秒前
斯文败类应助吴Sehun采纳,获得10
5秒前
鳗鱼落雁发布了新的文献求助10
6秒前
萧萧发布了新的文献求助10
6秒前
6秒前
林云夕发布了新的文献求助10
6秒前
welcomeS完成签到,获得积分20
7秒前
一颗桃子完成签到,获得积分10
7秒前
未来可期完成签到 ,获得积分10
7秒前
2306520发布了新的文献求助30
7秒前
纸鸢完成签到 ,获得积分10
8秒前
酒洲发布了新的文献求助10
8秒前
清脆天空完成签到,获得积分10
9秒前
NexusExplorer应助双儿采纳,获得10
9秒前
负责御姐发布了新的文献求助10
9秒前
瑞rui完成签到 ,获得积分10
9秒前
hawa完成签到,获得积分10
10秒前
10秒前
仁爱的酒窝完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
汉堡包应助向阳采纳,获得10
12秒前
FashionBoy应助江野采纳,获得10
13秒前
科研通AI6应助HYD采纳,获得10
13秒前
大个应助HYD采纳,获得10
13秒前
彭于晏应助lu采纳,获得10
13秒前
shiwo110完成签到,获得积分10
13秒前
13秒前
13秒前
jinyuqian发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262276
求助须知:如何正确求助?哪些是违规求助? 4423286
关于积分的说明 13769277
捐赠科研通 4297943
什么是DOI,文献DOI怎么找? 2358148
邀请新用户注册赠送积分活动 1354541
关于科研通互助平台的介绍 1315696