Improving GPS Code Phase Positioning Accuracy in Urban Environments Using Machine Learning

伪距 非视线传播 多径传播 全球定位系统 计算机科学 GPS信号 室内定位系统 人工智能 辅助全球定位系统 实时计算 电信 加速度计 全球导航卫星系统应用 无线 操作系统 频道(广播)
作者
Rui Sun,Guanyu Wang,Qi Cheng,Linxia Fu,Kai-Wei Chiang,Li‐Ta Hsu,Washington Yotto Ochieng
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (8): 7065-7078 被引量:35
标识
DOI:10.1109/jiot.2020.3037074
摘要

The accuracy of location information, mainly provided by the global positioning system (GPS) sensor, is critical for Internet-of-Things applications in smart cities. However, built environments attenuate GPS signals by reflecting or blocking them resulting in some cases multipath and non-line-of-sight (NLOS) reception. These effects cause range errors that degrade GPS positioning accuracy. Enhancements in the design of antennae and receivers deliver a level of reduction of multipath. However, NLOS signal reception and residual effects of multipath are still to be mitigated sufficiently for improvements in range errors and positioning accuracy. Recent machine learning-based methods have shown promise in improving pseudorange-based position solutions by considering multiple variables from raw GPS measurements. However, positioning accuracy is limited by low accuracy signal reception classification. Unlike the existing methods, which use machine learning to directly predict the signal reception classification, we use a gradient boosting decision tree (GBDT)-based method to predict the pseudorange errors by considering the signal strength, satellite elevation angle and pseudorange residuals. With the predicted pseudorange errors, two variations of the algorithm are proposed to improve positioning accuracy. The first corrects pseudorange errors and the other either corrects or excludes the signals determined to contain the effects of multipath and NLOS signals. The results for a challenging urban environment characterized by high-rise buildings on one side, show that the 3-D positioning accuracy of the pseudorange error correction-based positioning measured in terms of the root mean square error is 23.3 m, an improvement of more than 70% over the conventional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璐璐完成签到,获得积分10
刚刚
拉拉发布了新的文献求助10
刚刚
321完成签到,获得积分10
1秒前
年轻的路人完成签到,获得积分10
1秒前
张111完成签到,获得积分10
2秒前
吃的完成签到,获得积分10
2秒前
传奇3应助蝈蝈采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
阳佟怀绿发布了新的文献求助10
3秒前
4秒前
斯文败类应助栀暖棠深采纳,获得10
4秒前
健壮的飞烟完成签到,获得积分10
4秒前
小羊完成签到,获得积分20
4秒前
局外人完成签到,获得积分10
4秒前
甜美孤云完成签到 ,获得积分10
5秒前
Ming完成签到,获得积分10
5秒前
里昂123完成签到,获得积分10
5秒前
怡然思萱完成签到 ,获得积分10
5秒前
Yingkun_Xu完成签到,获得积分10
5秒前
小猴儿完成签到,获得积分10
6秒前
王思祺完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
lhy12345完成签到 ,获得积分10
6秒前
小羊发布了新的文献求助10
7秒前
Shaynin发布了新的文献求助10
7秒前
南宫硕完成签到 ,获得积分10
8秒前
8秒前
qwer完成签到 ,获得积分10
9秒前
辛勤的绮兰完成签到,获得积分10
9秒前
123456qqqq完成签到,获得积分10
9秒前
潇洒雁风发布了新的文献求助10
9秒前
10秒前
汉堡包应助ypcsjj采纳,获得10
10秒前
阿福完成签到,获得积分10
11秒前
BABY五齿完成签到,获得积分10
11秒前
Dafuer完成签到,获得积分10
11秒前
YTY完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482882
求助须知:如何正确求助?哪些是违规求助? 4583608
关于积分的说明 14390932
捐赠科研通 4513013
什么是DOI,文献DOI怎么找? 2473299
邀请新用户注册赠送积分活动 1459278
关于科研通互助平台的介绍 1432917