Investigation of Low Temperature SiP Epitaxy on 300 mm Si Substrate

外延 电阻率和电导率 材料科学 兴奋剂 基质(水族馆) 掺杂剂 图层(电子) 光电子学 化学气相沉积 分析化学(期刊) 复合材料 电气工程 化学 海洋学 色谱法 地质学 工程类
作者
Rami Khazaka,Lucas Petersen Barbosa Lima,Erik Rosseel,Andriy Hikavyy,Vijay D Costa,Qi Xie
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (24): 1734-1734 被引量:2
标识
DOI:10.1149/ma2020-02241734mtgabs
摘要

To continue the scaling down of transistors several challenges needs to be addressed, including the contact resistivity at the interface of the contact metal and the source/drain (SD) region, and the source/drain bulk resistivity. Phosphorous doped Si (Si:P) is commonly used for nFET as an alternative for (Si:C):P. In this work we report on low temperature (LT) epitaxy (below 500℃) of Si:P layers with extremely low as-grown layer resistivity. Optimal growth conditions at 400℃ led to a layer resistivity of 0.2 mOhm.cm and an active dopant concentration of ~1.15×10 21 cm -3 . Finally, the as-grown layer properties are compared to existing literature data. SiP layers were grown in a 300 mm ASM Intrepid ® ES reduced pressure chemical vapor deposition reactor on Si(001) substrates. The Intrepid ® system is equipped with a Previum ® module for pre-epi cleaning at low temperatures. First, a set of Si:P layers was epitaxially grown at 470°C, with various Si precursor flows. The pressure, carrier flow and PH 3 flow were kept constant. Figure 1 shows the omega-2theta scans around the symmetric (004) reflections of the Si:P/Si stacks. As expected, reducing the Si precursor flow leads to a higher substitutional P incorporation in the layer. The Si:P layer is pseudomorphic with good crystalline quality, as indicated by the thickness fringes. Figure 2 summarizes the HR-XRD angular spacing versus the SIMS content from different literature papers [1-4]. We note that for a low P doping level (<4%) the data are almost overlapping, while the spread increases for a high P content. This could be attributed different SIMS calibration for high P content. Using these calibration curves we note that the P content in the layers shown in Fig. 1 varies between ~1% to around 8.5% ± 0.5%. Figure 3 represents the resistivity versus the P content at three different temperatures (470°C, 440°C and 400°C). Definitely, the growth conditions were tuned to enable a growth with an acceptable growth rate at 400°C. The results indicate that reducing the growth temperature leads to a reduction in the layer resistivity, for the same P content. This highlights that the well-known P deactivation mechanism is correlated to the growth temperature. Figure 4 reveals AFM scans for the Si:P layers with different P content showing that smooth surface morphology can be obtained. Figure 5 compares the (micro-) Hall mobility versus the active concentration for the Si:P process developed in this frame work at LT to data obtained for DCS based process at high temperature (HT) (at 670°C). The DCS based layers were subjected to different thermal anneals [1]. The LT Si:P process follows the same trend, i.e. the Hall mobility decreases when the active dopant concentration increases. The reduction could be attributed to an increase in ionized impurity scattering. This explains the resistivity value around 0.2 mOhm.cm regardless of the P content at 400°C. Figure 6 shows the active dopant concentration as a function of the total dopant concentration. The LT process significantly outperforms the HT process in terms of ratio of active dopant over total dopant concentration. Furthermore, it shows an improvement in active dopant concentration even when compared to the layers exposed to ms laser anneal. Figure 7 summarizes the resistivity value for a Si:P layer obtained at high temperature and subsequently subjected to different anneals and the Si:P layer grown at 400°C, with a P content around 3%. Figure 8 shows the smooth surface morphology of the LT SiP layer with a resistivity of 0.2 mOhm.cm. Finally, Table 1 summarizes the key parameters for the Si:P layers found in literature and compare it to this work. To conclude, LT Si:P epitaxy paves the road towards new applications and is required for novel device architecture. However, a selective process is at utmost importance for integration schemes, which is currently under investigation. [1] E. Rosseel et al, ECS Trans. 75 (8) (2016) 347. [2] K.D Weeks et al, Thin Solid Films 520 (2012) 3158. [3] M. Lee et al, ACS Appl. Electron. Mater. 1 (3) (2019) 288. [4] X. Li et al, ECS Trans. 64 (6) (2014) 959. [5] J.M. Hartmann et al, Semicond. Sci. Technol. 32 (2017) 104003. [6] C.N. Ni et al, VLSI Technology, Kyoto, (2015) T118-T119. [7] M. Bauer el al, ECS Trans. 33 (6) (2010) 629. [8] Z. Ye et al, ECS Trans. 50 (9) (2012) 1007. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
燕儿完成签到,获得积分10
1秒前
1秒前
2秒前
lxy完成签到,获得积分10
2秒前
小前途完成签到,获得积分10
3秒前
3秒前
Cc发布了新的文献求助10
3秒前
Lyubb完成签到,获得积分10
4秒前
多来米完成签到,获得积分10
4秒前
4秒前
墨客发布了新的文献求助10
5秒前
5秒前
634301059完成签到 ,获得积分10
6秒前
今天喝咖啡吗完成签到,获得积分10
6秒前
WAwajiao发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
sss发布了新的文献求助10
8秒前
8秒前
9秒前
Norl_Corxilea完成签到,获得积分10
9秒前
嗯嗯你说完成签到,获得积分10
9秒前
Nireus发布了新的文献求助10
9秒前
脑洞疼应助ihtw采纳,获得10
10秒前
evefei发布了新的文献求助30
10秒前
clueless应助不忘初心采纳,获得10
11秒前
11秒前
11秒前
lulu完成签到,获得积分10
12秒前
无语的安白应助燕儿采纳,获得30
12秒前
谦让元槐发布了新的文献求助10
12秒前
111222333发布了新的文献求助30
12秒前
孔刚完成签到 ,获得积分10
12秒前
12秒前
13秒前
Reginannnn发布了新的文献求助10
13秒前
oppoaply发布了新的文献求助10
13秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848400
求助须知:如何正确求助?哪些是违规求助? 3391110
关于积分的说明 10565539
捐赠科研通 3111610
什么是DOI,文献DOI怎么找? 1714836
邀请新用户注册赠送积分活动 825498
科研通“疑难数据库(出版商)”最低求助积分说明 775556