光伏系统
光伏
光合作用
人工光合作用
生物量(生态学)
环境科学
太阳能
化学能
能量转换
工艺工程
化学
生态学
物理
工程类
生物
生物化学
热力学
有机化学
光催化
催化作用
作者
Robert E. Blankenship,David M. Tiede,James Barber,Gary W. Brudvig,Graham R. Fleming,Maria L. Ghirardi,M. R. Gunner,Wolfgang Junge,David Kramer,Anastasios Melis,Thomas A. Moore,Christopher C. Moser,Daniel G. Nocera,Arthur J. Nozik,Donald R. Ort,William W. Parson,Roger C. Prince,Richard T. Sayre
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2011-05-12
卷期号:332 (6031): 805-809
被引量:1527
标识
DOI:10.1126/science.1200165
摘要
Comparing photosynthetic and photovoltaic efficiencies is not a simple issue. Although both processes harvest the energy in sunlight, they operate in distinctly different ways and produce different types of products: biomass or chemical fuels in the case of natural photosynthesis and nonstored electrical current in the case of photovoltaics. In order to find common ground for evaluating energy-conversion efficiency, we compare natural photosynthesis with present technologies for photovoltaic-driven electrolysis of water to produce hydrogen. Photovoltaic-driven electrolysis is the more efficient process when measured on an annual basis, yet short-term yields for photosynthetic conversion under optimal conditions come within a factor of 2 or 3 of the photovoltaic benchmark. We consider opportunities in which the frontiers of synthetic biology might be used to enhance natural photosynthesis for improved solar energy conversion efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI