原花青素
化学
间苯三酚
儿茶素
产量(工程)
动力学
葡萄籽
葡萄籽提取物
食品科学
色谱法
生物化学
有机化学
抗氧化剂
多酚
材料科学
物理
量子力学
冶金
医学
替代医学
病理
作者
Emily M. Jorgensen,Anna Marín,James A. Kennedy
摘要
Proanthocyanidin isolates from grape (Vitis vinifera L. cv. Pinot noir) skin and seed underwent oxidative degradation in solution (10 g/L) under basic conditions while exposed to atmospheric oxygen. Degradation was monitored by reversed-phase HPLC following acid-catalyzed cleavage in the presence of excess phloroglucinol (phloroglucinolysis) and by high-performance gel permeation chromatography. All isolates degraded under these conditions and followed second-order kinetics for over 1 half-life, consistent with an oxidation reaction. The conversion of proanthocyanidins to known subunits (conversion yield) when measured by phloroglucinolysis showed a dramatic decline over the course of the reaction. With the exception of (+)-catechin extension subunits, all individual subunits decreased in concentration during the oxidation process, also following second-order kinetics for over 1 half-life. Skin proanthocyanidins degraded the fastest due to the presence of (-)-epigallocatechin extension subunits. Seed procyanidins were degraded with and without flavan-3-ol monomers. Flavan-3-ol monomers slowed the rate of seed procyanidin degradation. The mean degree of polymerization (mDP) determined by phloroglucinolysis indicated a large decrease in mDP as the reaction progressed; yet, by GPC, the size distribution of all proanthocyanidins changed little in comparison. The conversion yield could be an important parameter to follow when using phloroglucinolysis as a means for determining proanthocyanidin mDP, and when monitoring the oxidative degradation of proanthocyanidins.
科研通智能强力驱动
Strongly Powered by AbleSci AI