已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving the mapping accuracy of soil heavy metals through an adaptive multi-fidelity interpolation method

反距离权重法 插值(计算机图形学) 忠诚 环境科学 计算机科学 多元插值 均方误差 统计 土壤科学 数学 双线性插值 人工智能 运动(物理) 电信
作者
Lin Ju,S. Guo,Ruan Xue-yu,Yangyang Wang
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:330: 121827-121827 被引量:2
标识
DOI:10.1016/j.envpol.2023.121827
摘要

Soil heavy metal pollution poses a serious threat to environmental safety and human health. Accurately mapping the soil heavy metal distribution is a prerequisite for soil remediation and restoration at contaminated sites. To improve the accuracy of soil heavy metal mapping, this study proposed an error correction-based multi-fidelity technique to adaptively correct the biases of traditional interpolation methods. The inverse distance weighting (IDW) interpolation method was chosen and combined with the proposed technique to form the adaptive multi-fidelity interpolation framework (AMF-IDW). In AMF-IDW, sampled data were first divided into multiple data groups. Then one data group was used to build the low-fidelity interpolation model through IDW, while the other data groups were treated as high-fidelity data and used for adaptively correcting the low-fidelity model. The capability of AMF-IDW to map the soil heavy metal distribution was evaluated in both hypothetical and real-world scenarios. Results showed that AMF-IDW provided more accurate mapping results compared with IDW and the superiority of AMF-IDW became more evident as the number of adaptive corrections increased. Eventually, after using up all data groups, AMF-IDW improved the R2 values for mapping results of different heavy metals by 12.35-24.32%, and decreased the RMSE values by 30.35%-42.86%, indicating a much higher level of mapping accuracy relative to IDW. The proposed adaptive multi-fidelity technique can be equally combined with other interpolation methods and provide promising potential in improving the soil pollution mapping accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwl完成签到,获得积分10
2秒前
HI完成签到 ,获得积分10
2秒前
3秒前
感动傲易发布了新的文献求助10
4秒前
情怀应助柟枫采纳,获得10
5秒前
郭嘉仪发布了新的文献求助10
5秒前
5秒前
张子三完成签到,获得积分20
8秒前
慕青应助pinklay采纳,获得10
8秒前
毛毛发布了新的文献求助10
9秒前
wanci应助江湖一郎中采纳,获得10
10秒前
13秒前
浮游应助张子三采纳,获得10
14秒前
goodltl完成签到 ,获得积分10
15秒前
16秒前
桐桐应助郭嘉仪采纳,获得10
16秒前
16秒前
桐桐应助barn采纳,获得10
17秒前
17秒前
17秒前
科研通AI6应助张子三采纳,获得10
18秒前
yang完成签到 ,获得积分10
19秒前
英姑应助郭嘉仪采纳,获得10
20秒前
大个应助科研通管家采纳,获得30
20秒前
亮彤彤发布了新的文献求助10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
14发布了新的文献求助10
20秒前
科研通AI5应助王小明采纳,获得10
20秒前
20秒前
11发布了新的文献求助10
21秒前
barn完成签到,获得积分10
22秒前
养恩完成签到,获得积分10
22秒前
Sky完成签到,获得积分10
23秒前
怡然尔白发布了新的文献求助10
24秒前
郭嘉仪发布了新的文献求助10
25秒前
11完成签到,获得积分20
28秒前
爱学习的小李完成签到 ,获得积分10
29秒前
32秒前
爆米花应助曾经的匪采纳,获得20
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5030213
求助须知:如何正确求助?哪些是违规求助? 4265443
关于积分的说明 13297591
捐赠科研通 4074169
什么是DOI,文献DOI怎么找? 2228311
邀请新用户注册赠送积分活动 1237023
关于科研通互助平台的介绍 1161292