细胞凋亡
下调和上调
免疫印迹
海马结构
生物
细胞生物学
流式细胞术
药理学
分子生物学
化学
神经科学
生物化学
基因
作者
Guoli Zhang,Ying Gao,Lixin Jiang,Yuhang Zhang
出处
期刊:Neuroscience
[Elsevier BV]
日期:2023-04-29
卷期号:526: 48-60
被引量:1
标识
DOI:10.1016/j.neuroscience.2023.04.001
摘要
Epilepsy is a disabling and drug-refractory neurological disorder. Long non-coding RNAs (lncRNAs) play a vital role in neuronal function and central nervous system development. This study aimed to explore the regulatory mechanism of lncRNA five prime to Xist (FTX) in cell ferroptosis following epilepsy to provide a theoretical foundation for epilepsy management. Hippocampal neurons were isolated from brain tissues of healthy male SD rats, and an in vitro cell model of epilepsy was established using magnesium-free (MGF) induction. Patch-clamp technique was used to determine the action potentials of neurons. Neuronal viability and apoptosis were assessed by CCK-8 assay and flow cytometry. Levels of FTX, miR-142-5p, and GABPB1 were determined by RT-qPCR and Western blot, respectively. The cellular location of FTX was predicted and validated by RNA immunoprecipitation. Dual-luciferase assay verified targeting relationships among FTX, miR-142-5p, and GAPBP1. Levels of ferroptosis indicators and ferroptosis-related proteins were measured using Western blot and corresponding kits. Neuronal ferroptosis and apoptosis increased after MGF induction, and FTX was weakly-expressed in MGF-induced neurons. FTX overexpression attenuated ferroptosis and apoptosis of MGF-induced neurons. miR-142-5p was upregulated after MGF induction and downregulated after FTX overexpression, and FTX targeted miR-142-5p. miR-142-5p overexpression partially negated the inhibitory action of FTX overexpression on ferroptosis of MGF-induced neurons. FTX regulated GABPB1 expression by targeting miR-142-5p. In conclusion, FTX overexpression mitigated ferroptosis of MGF-induced neurons through the miR-142-5p/GABPB1 axis. In conclusion, lncRNA FTX inhibited ferroptosis of MGF-induced rat hippocampal neurons via the miR-142-5p/GABPB1 axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI