Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

神经影像学 模式 模态(人机交互) 计算机科学 人工智能 磁共振成像 医学 神经科学 心理学 精神科 放射科 社会科学 社会学
作者
Afshin Shoeibi,Marjane Khodatars,Mahboobeh Jafari,Navid Ghassemi,Parisa Moridian,Roohallah Alizadehsani,Sai Ho Ling,Abbas Khosravi,Hamid Alinejad‐Rokny,Hak‐Keung Lam,Matthew Fuller‐Tyszkiewicz,U. Rajendra Acharya,Donovan Anderson,Yudong Zhang,J. M. Górriz
出处
期刊:Information Fusion [Elsevier BV]
卷期号:93: 85-117 被引量:53
标识
DOI:10.1016/j.inffus.2022.12.010
摘要

Brain diseases, including tumors and mental and neurological disorders, seriously threaten the health and well-being of millions of people worldwide. Structural and functional neuroimaging modalities are commonly used by physicians to aid the diagnosis of brain diseases. In clinical settings, specialist doctors typically fuse the magnetic resonance imaging (MRI) data with other neuroimaging modalities for brain disease detection. As these two approaches offer complementary information, fusing these neuroimaging modalities helps physicians accurately diagnose brain diseases. Typically, fusion is performed between a functional and a structural neuroimaging modality. Because the functional modality can complement the structural modality information, thus improving the performance for the diagnosis of brain diseases by specialists. However, analyzing the fusion of neuroimaging modalities is difficult for specialist doctors. Deep Learning (DL) is a branch of artificial intelligence that has shown superior performances compared to more conventional methods in tasks such as brain disease detection from neuroimaging modalities. This work presents a comprehensive review paper in the field of brain disease detection from the fusion of neuroimaging modalities using DL models like convolutional neural networks (CNNs), recurrent neural networks (RNNs), pretrained, generative adversarial networks (GANs), and Autoencoders (AEs). First, neuroimaging modalities and the need for fusion are discussed. Then, review papers published in the field of neuroimaging multimodalities using AI techniques are explored. Moreover, fusion levels based on DL methods, including input, layer, and decision, with related studies conducted on diagnosing brain diseases, are discussed. Other sections present the most important challenges for diagnosing brain diseases from the fusion of neuroimaging modalities. In the discussion section, the details of previous research on the fusion of neuroimaging modalities based on MRI and DL models are reported. In the following, the most important future directions include Datasets, DA, imbalanced data, DL models, explainable AI, and hardware resources are presented. Finally, the main findings of this study are presented in the conclusion section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LSJ发布了新的文献求助10
1秒前
梨不圆发布了新的文献求助10
1秒前
2秒前
深情安青应助春风十二夜采纳,获得10
2秒前
2秒前
孤独如曼发布了新的文献求助10
2秒前
2秒前
CipherSage应助追寻紫安采纳,获得10
3秒前
溪鱼发布了新的文献求助10
3秒前
66m37发布了新的文献求助20
4秒前
5秒前
SYLH应助一只不大可爱的蛋采纳,获得10
5秒前
5秒前
6秒前
6秒前
Rui完成签到 ,获得积分10
6秒前
扶风完成签到,获得积分10
6秒前
7秒前
田様应助Rosyyyy采纳,获得10
7秒前
汪哈七发布了新的文献求助10
7秒前
范凛完成签到,获得积分20
8秒前
阿金发布了新的文献求助10
8秒前
四夕完成签到 ,获得积分10
8秒前
125倒数第完成签到 ,获得积分10
9秒前
Owen应助笨笨的水之采纳,获得20
9秒前
10秒前
10秒前
liquor完成签到,获得积分10
10秒前
雪上一枝蒿完成签到,获得积分10
10秒前
kilig发布了新的文献求助200
10秒前
哈哈哈完成签到,获得积分10
11秒前
11秒前
12秒前
CaptainMeme发布了新的文献求助10
12秒前
范凛发布了新的文献求助30
13秒前
13秒前
雪白的南晴完成签到,获得积分10
13秒前
陈陈完成签到,获得积分10
14秒前
科研助手6应助绝世容颜采纳,获得20
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813277
求助须知:如何正确求助?哪些是违规求助? 3357756
关于积分的说明 10388193
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689097
邀请新用户注册赠送积分活动 812548
科研通“疑难数据库(出版商)”最低求助积分说明 767178