Development and validation of a risk prediction model for breast cancer-related lymphedema in postoperative patients with breast cancer

医学 列线图 乳腺癌 淋巴水肿 癌症 放射治疗 淋巴结 肿瘤科 内科学 接收机工作特性 前瞻性队列研究 外科
作者
Miaomiao Li,Peipei Wu,Wanmin Qiang,Jia-qian Li,Ming-yu Zhu,Xiaolin Yang,Ying Wang
出处
期刊:European Journal of Oncology Nursing [Elsevier BV]
卷期号:63: 102258-102258
标识
DOI:10.1016/j.ejon.2022.102258
摘要

Objective Breast cancer-related lymphedema (BCRL) is a common post-operative complication in patients with breast cancer. Here, we sought to develop and validate a predictive model of BCRL in Chinese patients with breast cancer. Methods Clinical and demographic data on patients with breast cancer were collected between 2016 and 2021 at a Cancer Hospital in China. A nomogram for predicting the risk of lymphedema in postoperative patients with breast cancer was constructed and verified using R 3.5.2 software. Model performance was evaluated using area under the ROC curve (AUC) and goodness-of-fit statistics, and the model was internally validated. Results A total of 1732 postoperative patients with breast cancer, comprising 1212 and 520 patients in the development and validation groups, respectively, were included. Of these 438 (25.39%) developed lymphedema. Significant predictors identified in the predictive model were time since breast cancer surgery, level of lymph node dissection, number of lymph nodes dissected, radiotherapy, and postoperative body mass index. At the 31.9% optimal cut-off the model had AUC values of 0.728 and 0.710 in the development and validation groups, respectively. Calibration plots showed a good match between predicted and observed rates. In decision curve analysis, the net benefit of the model was better between threshold probabilities of 10%–80%. Conclusion The model has good discrimination and accuracy for lymphedema risk assessment, which can provide a reference for individualized clinical prediction of the risk of BCRL. Multicenter prospective trials are required to verify the predictive value of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sptyzl完成签到 ,获得积分10
1秒前
大气乐儿完成签到,获得积分10
1秒前
meijuan1210完成签到,获得积分10
1秒前
zyc1111111发布了新的文献求助20
2秒前
baitaowl完成签到 ,获得积分10
3秒前
Jj完成签到,获得积分10
4秒前
自有龙骧完成签到 ,获得积分10
5秒前
小二郎应助派大星采纳,获得10
7秒前
博修完成签到,获得积分10
8秒前
Dasha完成签到,获得积分10
9秒前
zh应助EnnoEven采纳,获得40
9秒前
9秒前
KaiZI完成签到 ,获得积分10
11秒前
12秒前
zyc1111111发布了新的文献求助20
13秒前
丰富的大地完成签到,获得积分10
13秒前
打水不打饭完成签到 ,获得积分10
15秒前
15秒前
康康完成签到,获得积分10
16秒前
18秒前
派大星发布了新的文献求助10
19秒前
科研通AI5应助xxz采纳,获得10
22秒前
宁宁完成签到,获得积分10
22秒前
EnnoEven完成签到,获得积分10
22秒前
科研通AI2S应助小绵羊采纳,获得10
24秒前
danna应助小绵羊采纳,获得10
24秒前
zlx完成签到,获得积分10
25秒前
Chem34完成签到,获得积分10
25秒前
27秒前
CodeCraft应助现代的战斗机采纳,获得10
29秒前
桐桐应助洁净的惜筠采纳,获得10
29秒前
饱满跳跳糖给饱满跳跳糖的求助进行了留言
30秒前
grs完成签到,获得积分10
30秒前
派大星完成签到,获得积分10
30秒前
秋半梦完成签到,获得积分10
31秒前
饱满一手完成签到 ,获得积分10
31秒前
淡然冬灵发布了新的文献求助10
32秒前
Ran完成签到 ,获得积分10
33秒前
huiluowork完成签到 ,获得积分10
33秒前
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308