Multi-Level Progressive Learning for Unsupervised Vehicle Re-Identification

计算机科学 判别式 聚类分析 人工智能 特征(语言学) 光学(聚焦) 特征学习 鉴定(生物学) 无监督学习 智能交通系统 机器学习 过程(计算) 模式识别(心理学) 数据挖掘 工程类 哲学 语言学 物理 植物 土木工程 光学 生物 操作系统
作者
Zhijun He,Hongbo Zhao,Jianrong Wang,Wenquan Feng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (4): 4357-4371 被引量:20
标识
DOI:10.1109/tvt.2022.3228127
摘要

Vehicle re-identification (ReID) technology has played a more and more important role in Intelligent Transport System (ITS), which aims at searching the same query vehicle identity from a large amount of gallery datasets under different non-overlapping camera views. Current related researches mainly focus on discriminative feature mining of vehicle images and train the model in a fully supervised manner which highly relies on the manual annotations of training data. However, it is labor-consuming and impractical to generate the annotation for each sample image in real-word applications especially for those large-scale transport systems with tons of surveillance data. To this point, we propose in this paper a multi-level progressive learning (MLPL) method for unsupervised vehicle ReID, which gives a good performance by only utilizing the unlabeled target domain images. We firstly introduce a multi-branch architecture to explore the vehicle representations in different level, which consists of one branch for global feature and two branches for local feature learning. A density-based clustering method is employed to generate pseudo labels. Combining with the unique model, we propose a novel re-clustering method to better mine the labels with high reliability. Then a dynamic progressive contrast learning (DPCL) strategy is carefully designed to train the network based on these clustered labels. DPCL could dynamically adjust the training process to maximally strengthen the multi-level feature learning. Moreover, we further propose a self-adaptive loss balance method to automatically compute the weights of different losses during each training iteration. Comprehensive experiments are conducted on several mainstream evaluation datasets, including VeRi776, VehicleID and CityFlowV2-ReID. Compared to other existed unsupervised methods, our approach achieves the new state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
称心的高丽完成签到 ,获得积分10
1秒前
花城完成签到 ,获得积分10
2秒前
大鹅莓烦恼完成签到,获得积分10
2秒前
第二支羽毛完成签到,获得积分10
2秒前
fiona完成签到,获得积分0
3秒前
舟遥遥完成签到,获得积分10
5秒前
9秒前
11秒前
LEO2025完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
14秒前
qs完成签到,获得积分10
15秒前
鲸鱼打滚完成签到 ,获得积分10
15秒前
16秒前
朽木完成签到,获得积分10
16秒前
18秒前
zhang完成签到 ,获得积分10
19秒前
张琳完成签到 ,获得积分10
20秒前
昏睡的妙梦完成签到,获得积分10
21秒前
21秒前
lm完成签到,获得积分10
21秒前
马铃薯完成签到,获得积分10
23秒前
王修完成签到,获得积分10
24秒前
哈哈哈完成签到 ,获得积分10
24秒前
斯文败类应助孤独的冰彤采纳,获得10
24秒前
小茵茵完成签到,获得积分10
25秒前
悄悄完成签到 ,获得积分10
26秒前
英俊的馒头完成签到,获得积分10
26秒前
跳跃的滑板完成签到,获得积分10
26秒前
666发布了新的文献求助10
26秒前
cxxxx完成签到,获得积分10
27秒前
小启发布了新的文献求助10
27秒前
布吉岛呀完成签到 ,获得积分10
27秒前
吴老师完成签到 ,获得积分10
30秒前
fuguier完成签到,获得积分10
30秒前
车厘子完成签到 ,获得积分10
31秒前
痞子毛完成签到,获得积分10
32秒前
Accpted河豚完成签到,获得积分10
32秒前
糖糖完成签到 ,获得积分10
33秒前
RRRer完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599949
求助须知:如何正确求助?哪些是违规求助? 4685756
关于积分的说明 14839094
捐赠科研通 4674348
什么是DOI,文献DOI怎么找? 2538438
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086