Distinguishing multiple primary lung cancers from intrapulmonary metastasis using CT-based radiomics

无线电技术 医学 接收机工作特性 肺癌 放射科 核医学 肿瘤科 内科学
作者
Mei Huang,Qinmei Xu,Mu Zhou,Xinyu Li,Wenhui Lv,Changsheng Zhou,Ren Wu,Zhen Zhou,Xingzhi Chen,Chencui Huang,Guangming Lu
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:160: 110671-110671 被引量:6
标识
DOI:10.1016/j.ejrad.2022.110671
摘要

To develop CT-based radiomics models that can efficiently distinguish between multiple primary lung cancers (MPLCs) and intrapulmonary metastasis (IPMs).This retrospective study included 127 patients with 254 lung tumors pathologically proved as MPLCs or IPMs between May 2009 and January 2020. Radiomics features of lung tumors were extracted from baseline CT scans. Particularly, we incorporated tumor-focused, refined radiomics by calculating relative radiomics differences from paired tumors of individual patients. We applied the L1-norm regularization and analysis of variance to select informative radiomics features for constructing radiomics model (RM) and refined radiomics model (RRM). The performance was assessed by the area under the receiver operating characteristic curve (AUC-ROC). The two radiomics models were compared with the clinical-CT model (CCM, including clinical and CT semantic features). We incorporated both radiomics features to construct fusion model1 (FM1). We also, build fusion model2 (FM2) by combing both radiomics, clinical and CT semantic features. The performance of the FM1 and FM2 were further compared with that of the RRM.On the validation set, the RM achieved an AUC of 0.857. The RRM demonstrated improved performance (validation set AUC, 0.870) than the RM, and showed significant differences compared with the CCM (validation set AUC, 0.782). Fusion models further led prediction performance (validation set AUC, FM1:0.885; FM2:0.889). There were no significant differences among the performance of the FM1, the FM2 and the RRM.The CT-based radiomics models presented good performance on the discrimination between MPLCs and IPMs, demonstrating the potential for early diagnosis and treatment guidance for MPLCs and IPMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eureka发布了新的文献求助10
刚刚
1秒前
二大爷完成签到,获得积分10
2秒前
化雨发布了新的文献求助10
4秒前
刘某完成签到,获得积分10
4秒前
大猪完成签到,获得积分10
6秒前
刘某发布了新的文献求助10
6秒前
8秒前
开始的开始完成签到,获得积分10
9秒前
9秒前
凌凌漆应助ziyue采纳,获得10
9秒前
yang完成签到,获得积分10
10秒前
852应助孤巷的猫采纳,获得10
11秒前
人言可畏完成签到 ,获得积分10
11秒前
12秒前
YHL完成签到,获得积分10
14秒前
14秒前
熊宜浓发布了新的文献求助10
17秒前
小玉应助feikun采纳,获得10
18秒前
WonderHua完成签到,获得积分10
20秒前
顾矜应助疯狂的凡梦采纳,获得10
20秒前
棕熊熊应助hkh采纳,获得10
20秒前
21秒前
流浪随笔发布了新的文献求助10
21秒前
诗梦完成签到,获得积分10
23秒前
星辰大海应助caomin采纳,获得10
24秒前
聪仔发布了新的文献求助10
25秒前
派大星完成签到,获得积分10
25秒前
梦XING完成签到 ,获得积分10
25秒前
欣欣完成签到,获得积分10
26秒前
26秒前
汉堡包应助大胆的娩采纳,获得10
26秒前
Ling完成签到 ,获得积分10
29秒前
xl完成签到 ,获得积分10
30秒前
31秒前
三石呦423完成签到,获得积分10
31秒前
沙子发布了新的文献求助10
32秒前
科研小破白菜完成签到,获得积分10
34秒前
漂亮的小刺猬完成签到,获得积分10
35秒前
36秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947