Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks

风力发电 风电预测 计算机科学 人工神经网络 变压器 可靠性(半导体) 风速 电力系统 数据挖掘 可靠性工程 人工智能 功率(物理) 电压 工程类 气象学 电气工程 物理 量子力学
作者
Shilin Sun,Yuekai Liu,Qi Li,Tianyang Wang,Fulei Chu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:283: 116916-116916 被引量:104
标识
DOI:10.1016/j.enconman.2023.116916
摘要

Spatio-temporal wind power forecasting is significant to the stability of electric power systems. However, the accuracy of power forecasting results is easily impaired by the insufficient capacity of sequence modeling and misleading information from distinct wind turbines. In this paper, a novel method is proposed to resolve the mentioned problem. Specifically, the reliability of wind condition knowledge is enhanced by considering the spatial information of surrounding wind turbines. Moreover, two metrics based on the distance and correlation are developed to evaluate the quality of spatial information. To learn sequential dependencies regardless of the distance, wind power modeling is achieved by transformer neural networks based on the multi-head attention mechanism. Furthermore, experiments are conducted to assess the performance of the proposed method with real-world measurements. Results show that the proposed method outperforms several baseline and state-of-the-art approaches, and the superiority is particularly prominent with large steps. In two experiments, the average values of mean absolute error of forecasting results generated by the proposed method are only 0.0914 and 0.0911, respectively, which is significantly better than other approaches. With accurate results of short-term multi-step forecasting, this work makes contributions to the effective utilization of wind energy resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
巴黎的防发布了新的文献求助10
刚刚
1秒前
西野完成签到,获得积分10
3秒前
感谢大家发布了新的文献求助10
3秒前
太叔文博完成签到,获得积分10
3秒前
5秒前
小嘎发布了新的文献求助10
5秒前
meww发布了新的文献求助10
5秒前
6秒前
左嫣娆完成签到,获得积分10
6秒前
充电宝应助迷路的煎蛋采纳,获得10
7秒前
李健的粉丝团团长应助TXNM采纳,获得10
7秒前
崔乞发布了新的文献求助30
8秒前
2758543477完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
stancy123完成签到,获得积分10
10秒前
枫叶完成签到,获得积分10
11秒前
希望天下0贩的0应助meww采纳,获得10
11秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
碗碗豆喵完成签到 ,获得积分10
15秒前
枫叶发布了新的文献求助20
15秒前
15秒前
崔乞完成签到,获得积分10
17秒前
gfasdjsjdsjd发布了新的文献求助10
17秒前
17秒前
離原发布了新的文献求助10
18秒前
18秒前
meww完成签到,获得积分10
19秒前
罗浚航完成签到,获得积分20
19秒前
meng发布了新的文献求助10
19秒前
20秒前
yvy完成签到,获得积分10
20秒前
英姑应助gfasdjsjdsjd采纳,获得30
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1900
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038917
求助须知:如何正确求助?哪些是违规求助? 3576619
关于积分的说明 11376004
捐赠科研通 3306410
什么是DOI,文献DOI怎么找? 1819432
邀请新用户注册赠送积分活动 892755
科研通“疑难数据库(出版商)”最低求助积分说明 815088