Multi-modal multi-objective particle swarm optimization with self-adjusting strategy

粒子群优化 情态动词 水准点(测量) 趋同(经济学) 多群优化 群体行为 数学优化 计算机科学 最优化问题 数学 大地测量学 经济增长 经济 化学 高分子化学 地理
作者
Honggui Han,Yu-Cheng Liu,Ying Hou,Junfei Qiao
出处
期刊:Information Sciences [Elsevier BV]
卷期号:629: 580-598 被引量:30
标识
DOI:10.1016/j.ins.2023.02.019
摘要

Since the exploration of multiple solution sets will lead to the deterioration of convergence in multi-objective particle swarm optimization, the motion of the particles is severely disturbed by the under-convergence solutions in multi-modal multi-objective optimization problems (MMOPs). To solve this problem, a multi-modal multi-objective particle swarm optimization with self-adjusting strategy (MMOPSOSS) is proposed to promote the complete convergence of multiple solution sets through the self-adjusting of parameters and population size. First, a multi-swarm optimization framework is designed to obtain diverse convergence directions. Second, a self-adjusting local search mechanism is introduced to improve the search performance of sub-swarms in the potential regions according to the feedback information detected by diversity entropy under this framework. Third, a sub-swarm-balancing strategy is developed to balance the degree of convergence among different regions by adjusting the size of the sub-swarms. Finally, MMOPSOSS is compared with several multi-modal multi-objective optimization algorithms in benchmark experiments and engineering simulation experiments. The results demonstrate that MMOPSOSS has a positive effect on the convergence of multiple solution sets for MMOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定夜山完成签到,获得积分10
1秒前
1秒前
加菲丰丰应助喜悦海白采纳,获得30
2秒前
3秒前
3秒前
阿坤发布了新的文献求助10
4秒前
丘山先生发布了新的文献求助10
5秒前
xiaotian完成签到,获得积分10
5秒前
huihongzeng完成签到,获得积分10
6秒前
loen完成签到,获得积分10
6秒前
一帆风顺发布了新的文献求助10
6秒前
7秒前
ark861023发布了新的文献求助10
7秒前
8秒前
语上完成签到,获得积分10
8秒前
9秒前
xc发布了新的文献求助10
9秒前
9秒前
Ogai完成签到,获得积分10
10秒前
zxy关闭了zxy文献求助
10秒前
科研通AI2S应助jidou1011采纳,获得10
10秒前
炙热灵发布了新的文献求助10
10秒前
11秒前
所所应助ark861023采纳,获得10
12秒前
慕青应助蛋妞儿采纳,获得10
13秒前
sylinmm完成签到,获得积分10
14秒前
14秒前
大个应助sdl采纳,获得10
15秒前
15秒前
123发布了新的文献求助10
15秒前
慕青应助Paper多多采纳,获得10
16秒前
思源应助一条纤维化的鱼采纳,获得20
17秒前
丘山先生完成签到,获得积分10
17秒前
kl完成签到,获得积分10
18秒前
小王发布了新的文献求助10
18秒前
19秒前
Tang发布了新的文献求助10
20秒前
20秒前
21秒前
科研修沟完成签到 ,获得积分10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838587
求助须知:如何正确求助?哪些是违规求助? 3380942
关于积分的说明 10516287
捐赠科研通 3100475
什么是DOI,文献DOI怎么找? 1707527
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772949