Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:55 (08): 701-708 被引量:30
标识
DOI:10.1055/a-2031-0691
摘要

BACKGROUND : Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. METHODS : The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. RESULTS : The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). CONCLUSIONS : The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
han完成签到,获得积分10
4秒前
忧郁难胜完成签到,获得积分10
4秒前
小小果妈发布了新的文献求助20
4秒前
5秒前
鲁天宇发布了新的文献求助10
6秒前
啥也不会完成签到,获得积分10
7秒前
甜食发布了新的文献求助10
8秒前
韦老虎发布了新的文献求助10
9秒前
jiajiajai发布了新的文献求助10
12秒前
希望天下0贩的0应助舟遥采纳,获得10
13秒前
zimo完成签到,获得积分10
15秒前
16秒前
abc完成签到,获得积分20
18秒前
Kirito应助韦老虎采纳,获得30
19秒前
虚幻的井完成签到,获得积分10
20秒前
李健应助左边向北采纳,获得10
23秒前
24秒前
24秒前
24秒前
Goodluck完成签到 ,获得积分10
25秒前
26秒前
丘比特应助饶天源采纳,获得10
28秒前
28秒前
坚强的寒风完成签到 ,获得积分10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079511
求助须知:如何正确求助?哪些是违规求助? 3618947
关于积分的说明 11484937
捐赠科研通 3335222
什么是DOI,文献DOI怎么找? 1833452
邀请新用户注册赠送积分活动 902551
科研通“疑难数据库(出版商)”最低求助积分说明 821162