Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study

医学 内窥镜检查 粘膜下层 病变 放射科 发育不良 人工智能 外科 内科学 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Gwang Ho Baik,Hyun Lim,Jae Hoon Jeong,Sung Won Choi,Joonhee Cho,Deok Yeol Kim,Kang Bin Lee,Seung-il Shin,Dick Sigmund,Byeong In Moon,Sung Chul Park,Sang Hoon Lee,Ki Bae Bang,Dae‐Soon Son
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:55 (08): 701-708 被引量:30
标识
DOI:10.1055/a-2031-0691
摘要

BACKGROUND : Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. METHODS : The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. RESULTS : The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %; P = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). CONCLUSIONS : The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gao完成签到 ,获得积分10
刚刚
刚刚
bibgyueli完成签到,获得积分10
1秒前
小蘑菇应助洋芋锅巴采纳,获得10
2秒前
HHHWJ完成签到 ,获得积分10
2秒前
4秒前
4秒前
温暖涫完成签到 ,获得积分10
5秒前
子车雁开发布了新的文献求助10
5秒前
Altria发布了新的文献求助10
5秒前
跳脚的虾完成签到 ,获得积分10
5秒前
陈笨笨完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
冷静的胜完成签到,获得积分10
10秒前
12秒前
lf完成签到,获得积分10
13秒前
海螺姑娘完成签到,获得积分10
13秒前
13秒前
DXM完成签到 ,获得积分10
14秒前
黄徐发布了新的文献求助10
15秒前
rym0404完成签到,获得积分10
16秒前
朱科源啊源完成签到 ,获得积分10
16秒前
安澜发布了新的文献求助200
17秒前
伶俐的雁蓉完成签到,获得积分10
18秒前
吴语旭完成签到,获得积分10
19秒前
HZ发布了新的文献求助10
19秒前
nancy发布了新的文献求助10
20秒前
无花果应助霸气的黑猫采纳,获得10
20秒前
大意的雨双完成签到 ,获得积分10
21秒前
22秒前
梦想飞翔完成签到,获得积分10
23秒前
23秒前
数乱了梨花完成签到 ,获得积分10
24秒前
qdsj2033完成签到,获得积分10
25秒前
25秒前
27秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743