已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecular mechanisms of arecoline-induced oral cancer: a network toxicology and molecular docking techniques integrated analysis

槟榔碱 对接(动物) 计算生物学 医学 药理学 生物 内科学 毒蕈碱乙酰胆碱受体 护理部 受体
作者
Linghan Leng,Xin Wang,Hao Wang,Yingchun Hu,Yaxing Deng,Chenglin Wang
出处
期刊:Discover Oncology [Springer Nature]
卷期号:16 (1): 842-842 被引量:1
标识
DOI:10.1007/s12672-025-02659-0
摘要

The IARC classified betel nut as Group 1 carcinogen (2004) and arecoline as Group 2B carcinogen (2020), with approximately one-third of global oral cancer cases attributed to smokeless tobacco or betel nut consumption. While current evidence establishes an association between arecoline and oral cancer, the underlying molecular mechanisms remain complex and poorly elucidated. This study employs network toxicology integrated with molecular docking techniques to systematically investigate the potential molecular pathogenesis of arecoline-induced oral cancer, aiming to provide novel insights for targeted therapeutic strategies. The SMILES structure of arecoline was retrieved from PubChem for foundational data preparation. Toxicity profiling was conducted using ProTox-3.0 and ADMETlab databases. Potential targets of arecoline were identified via STITCH and SwissTargetPrediction. Oral cancer-related targets were collated from GeneCards, OMIM, and TTD. Intersection analysis between arecoline targets and oral cancer-associated targets was performed to identify shared targets, which were further utilized to construct compound-target regulatory network and subjected to PPI, GO, and KEGG analyses. Core targets driving oral cancer were screened using the cytoHubba plugin. Then, the correlation between core targets and immune cell infiltration in oral cancer was explored, and molecular docking validated the binding affinity of arecoline to core targets. Finally, Gromacs 2022.3 software was used to simulate the molecular dynamics of the complexes obtained by molecular docking for 100 ns. Using the STITCH and SwissTargetPrediction databases, a total of 46 potential targets of arecoline were identified. Concurrently, 2,375 oral cancer-related targets were retrieved from GeneCards, OMIM, and TTD. Intersection analysis of these two target sets yielded 26 overlapping targets. PPI analysis revealed that TP53, IL6, SNAI1, and CASP3 occupied central positions in the network, exhibiting extensive interactions with other target proteins. Enrichment analysis comprehensively elucidated the molecular functions, biological processes, cellular components, and associated pathways of these overlapping targets. Further screening using Cytoscape software identified four core targets: TP53, TNF, IL6, and CASP3. Immune infiltration analysis indicated that the expression levels of TP53, TNF, IL6, and CASP3 in oral cancer tissues were positively correlated with the infiltration levels of immune cells, including CD8 + T cells, Th1 cells, NK cells, and macrophages. Molecular docking experiments demonstrated strong binding activities between arecoline and TP53, IL6, and CASP3, while TNF also exhibited moderate binding affinity. Dynamic simulation further verified the stable binding of arecoline to TP53, TNF, IL6 and CASP3. Arecoline may induce oral cancer by acting on core targets including TP53, TNF, IL6, and CASP3, which interfere with normal cellular growth regulation, inflammatory responses, and apoptotic mechanisms. Therapeutic strategies targeting TP53, TNF, IL6, and CASP3 may represent novel research directions for clinical diagnosis and treatment of oral cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马宁婧完成签到 ,获得积分10
1秒前
2秒前
xunanlei发布了新的文献求助10
4秒前
m(_._)m完成签到 ,获得积分0
4秒前
在水一方应助呆萌的谷波采纳,获得10
8秒前
9秒前
冷静新烟完成签到,获得积分10
9秒前
等乙天发布了新的文献求助10
12秒前
小事完成签到 ,获得积分10
13秒前
欢喜的文轩完成签到 ,获得积分10
20秒前
23秒前
24秒前
所所应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI6应助呆萌的谷波采纳,获得10
25秒前
25秒前
傅家庆完成签到 ,获得积分10
28秒前
31秒前
浮游应助朱文韬采纳,获得10
34秒前
浮游应助朱文韬采纳,获得10
34秒前
科研通AI6应助朱文韬采纳,获得10
34秒前
wxyshare应助朱文韬采纳,获得10
34秒前
华仔应助朱文韬采纳,获得10
34秒前
34秒前
可爱的函函应助朱文韬采纳,获得210
34秒前
44秒前
努力搞科研完成签到,获得积分10
44秒前
45秒前
46秒前
wjp完成签到 ,获得积分10
48秒前
啊熙完成签到 ,获得积分10
48秒前
48秒前
颜卿完成签到 ,获得积分10
48秒前
plum完成签到,获得积分20
48秒前
本本完成签到 ,获得积分10
49秒前
LB发布了新的文献求助10
50秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538412
求助须知:如何正确求助?哪些是违规求助? 4625561
关于积分的说明 14596411
捐赠科研通 4566146
什么是DOI,文献DOI怎么找? 2503005
邀请新用户注册赠送积分活动 1481293
关于科研通互助平台的介绍 1452563