Lithium battery SOH prediction based on Frequency-Enhanced Cross variable for Short-Term Dependency Recognition framework

依赖关系(UML) 期限(时间) 电池(电) 计算机科学 锂(药物) 变量(数学) 模式识别(心理学) 人工智能 算法 材料科学 数学 医学 热力学 功率(物理) 物理 内科学 数学分析 量子力学
作者
Tao Xue,Xiang Li,Long Xi,Jiayi Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/add48a
摘要

Abstract Accurate and stable predictions of the state-of-health (SOH) of lithium-ion batteries are essential for effective battery management and extending battery lifespan. Two major issues exist in current lithium battery capacity prediction models. First the original data captured from temperature, voltage, and current sensors contains a large number of noises, which negatively impacts prediction accuracy. Second, the SOH of lithium-ion batteries is significantly influenced by factors such as current temperature, charge and discharge rates, and voltage. These rapid changing factors can be captured more effectively using short-term dependence rather than long-term dependence. However, the short-term dependence of capacity degradation is not fully captured, and the coupling relationships among multivariable sequences, along with the inaccurate capacity predictions resulting from frequency information, are not adequately addressed. In this paper, we propose a frequency-domain enhanced trans-variate short-term dependence recognition framework, FE-STDR, to solve these two problems and predict the SOH of lithium batteries. The FE-STDR framework comprises two modules including Stacked Denoised Autoencoder (SDAE) and FEformer. SDAE module removes noise captured during the original battery data acquisition and capacity cycles, automatically extracting high-level features to capture complex battery state patterns through its multi-layer denoising structures. The FEformer module introduces a Frequency Enhanced Channel Attention Mechanism to integrate frequency information into the framework while considering short-term frequency dependence in lithium battery data. The results indicate that the RMSE of the proposed framework is reduced by 6.53%, 11.78%, and 7.34%, respectively, compared to the baseline models: LSTM, Transformer, and AE-GRU. The prediction accuracy proves that the proposed FE-STDR is superior, enabling accurate forecasting of the degradation trajectory of lithium battery SOH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐冰发布了新的文献求助20
1秒前
彭于晏应助easymoney采纳,获得10
1秒前
reikakakaka发布了新的文献求助100
1秒前
牛X完成签到,获得积分10
1秒前
无人喝彩发布了新的文献求助10
2秒前
大个应助乐乐乐乐采纳,获得10
2秒前
2秒前
科研通AI5应助刘香采纳,获得10
3秒前
大个应助傲娇颖采纳,获得10
3秒前
救救孩子我想要论文完成签到,获得积分10
3秒前
传奇3应助麻瓜晋升小巫师采纳,获得10
3秒前
4秒前
咕噜完成签到,获得积分10
4秒前
5秒前
单薄的尔烟完成签到,获得积分10
5秒前
NATURECATCHER完成签到,获得积分10
5秒前
iFaceDOG完成签到,获得积分10
5秒前
5秒前
华仔应助小丁采纳,获得10
6秒前
善学以致用应助孟祥磊采纳,获得10
6秒前
灰色铅笔发布了新的文献求助10
7秒前
星辰大海应助梦天采纳,获得10
8秒前
小二郎应助玩命的纸鹤采纳,获得10
8秒前
8秒前
李爱国应助YOLO采纳,获得10
8秒前
被猪养的科研猪完成签到,获得积分10
9秒前
9秒前
9秒前
万能图书馆应助小晶豆采纳,获得10
9秒前
9秒前
Frederick完成签到,获得积分20
9秒前
bajie01完成签到,获得积分10
10秒前
10秒前
佩楠发布了新的文献求助10
10秒前
WilliamChan发布了新的文献求助10
11秒前
11秒前
11秒前
bkagyin应助抽象电台头采纳,获得30
12秒前
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835562
求助须知:如何正确求助?哪些是违规求助? 3377932
关于积分的说明 10501197
捐赠科研通 3097494
什么是DOI,文献DOI怎么找? 1705854
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772221