A Digital Score Based on Circulating-Tumor-Cells-Derived mRNA Quantification and Machine Learning for Early Colorectal Cancer Detection

结直肠癌 信使核糖核酸 癌症 肿瘤细胞 癌症研究 循环肿瘤细胞 计算机科学 人工智能 医学 肿瘤科 内科学 生物 基因 转移 生物化学
作者
Cheng Li,Zhili Wang,Pi Ding,Zeyang Zhou,Ruidong Chen,Yunyun Hu,Kui Zhao,Wei Peng,Xiaodong Yang,Na Sun,Renjun Pei
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (19): 18117-18128 被引量:3
标识
DOI:10.1021/acsnano.4c15056
摘要

Circulating tumor cells (CTCs) serve as valuable biomarkers in tumor circulation, carrying essential primary tumor information. The purification of CTCs from peripheral blood samples and the analysis of their characteristic molecules enable the detection of tumors at an early stage. The noninvasive, continuous, real-time dynamic monitoring provides a promising solution for the timely diagnosis of colorectal cancer (CRC). In this study, we developed a minimally invasive method for CRC early detection to enable accurate screening in a friendly manner for individuals who generally require colonoscopy. The dual-antibody (i.e., anti-EpCAM and anti-EGFR) modified antifouling hydrogel-coated magnetic nanoparticles (pSBMA-MNPs) were prepared for efficient and specific CTC purification. Then, the quantification of 6 RNA transcripts in purified CRC CTCs was performed via droplet digital PCR (ddPCR), and a CRC score was calculated using an extreme gradient boosting model to distinguish CRC from colon polyps and adenomas. A pilot study was conducted to evaluate the clinical potential of the CRC CTC RNA assay in a training cohort (n = 101) and an independent test cohort (n = 65), achieving a diagnostic accuracy of 91.0% in the whole cohort, significantly outperforming serum CEA, CA125, and CA199. Subgroup analysis across CRC stage, age, and tumor location of patients was also performed, and the CRC score exhibited robust performance, demonstrating commendable diagnostic efficacy for CRC detection and promising application in friendly screening individuals that really require colonoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠紫真发布了新的文献求助10
刚刚
Hann发布了新的文献求助10
1秒前
1秒前
少一点西红柿完成签到 ,获得积分10
2秒前
卷毛发布了新的文献求助10
3秒前
3秒前
3秒前
徐磊完成签到,获得积分10
4秒前
4秒前
LiuKangwei完成签到,获得积分10
5秒前
6秒前
南弦月发布了新的文献求助10
7秒前
Charlene发布了新的文献求助30
9秒前
斯文沛儿完成签到,获得积分10
9秒前
hxx发布了新的文献求助10
10秒前
11111发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
陈佳利关注了科研通微信公众号
12秒前
13秒前
14秒前
Ava应助洋洋得意采纳,获得10
15秒前
15秒前
18秒前
念y完成签到 ,获得积分10
19秒前
19秒前
22秒前
香蕉觅云应助11111采纳,获得10
23秒前
23秒前
24秒前
鹊起发布了新的文献求助10
24秒前
谢桓完成签到 ,获得积分10
24秒前
25秒前
25秒前
嘿嘿发布了新的文献求助10
25秒前
25秒前
26秒前
xiaoxu发布了新的文献求助10
27秒前
结实梦琪发布了新的文献求助10
28秒前
28秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620818
求助须知:如何正确求助?哪些是违规求助? 4705416
关于积分的说明 14931932
捐赠科研通 4763450
什么是DOI,文献DOI怎么找? 2551239
邀请新用户注册赠送积分活动 1513799
关于科研通互助平台的介绍 1474704