已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating machine learning and digital twin for strength prediction of CFRP/aluminum adhesive joints under hygrothermal conditions

材料科学 胶粘剂 复合材料 结构工程 工程类 图层(电子)
作者
Noor Hadi Aysa,Sajjad Karimi
出处
期刊:Polymer Composites [Wiley]
卷期号:46 (14): 13236-13255 被引量:4
标识
DOI:10.1002/pc.29928
摘要

Abstract This study investigates the application of machine learning models integrated with a digital twin (DT) framework to predict and correlate the performance of carbon fibre‐reinforced polymer‐to‐aluminum adhesive joints subjected to hygrothermal aging. By combining experimental methods with machine learning techniques, the research aims to bridge the gap between the effects of natural and accelerated aging on adhesive joints. The joints were manufactured and then left to age naturally for a period of one to 3 years. For accelerated aging, the joints were subjected to hygrothermal conditions for a period of four to 50 days. Three‐point bending tests were utilized to evaluate the performance of the joints. To evaluate natural aging periods using accelerated aging data, five machine learning algorithms were used: support vector regression (SVR), artificial neural network (ANN), linear regression, random forest regression (RF) and XGBoost. scanning electron microscopy (SEM) analyses showed that moisture absorption caused a substantial change in the surface morphology of aluminum adherends, including increased roughness and crystalline formations. The results indicated that XGBoost has provided almost perfect predictions since MSE values equal to 0 were observed at all iterations, highlighting its accuracy and reliability. In contrast, the SVR and linear regression models demonstrated much lower accuracy, with clear differences observed in their predictions. The integration of digital twin with machine learning approaches turns out to be the most efficient method of real‐time adaptation of the model as well as accurate performance prediction, enhancing the durability and reliability of the composite structures. Highlights Strength prediction of adhesive joints by using Machine learning and digital twin. SEM revealed moisture‐induced changes in aluminum surface morphology. XGBoost model showed high prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋泥完成签到,获得积分10
1秒前
2秒前
腰突患者的科研完成签到,获得积分10
2秒前
3秒前
5秒前
zzz完成签到,获得积分10
5秒前
巩泓辰完成签到,获得积分10
5秒前
Aurora发布了新的文献求助10
6秒前
6秒前
Dou完成签到,获得积分10
7秒前
Fn完成签到 ,获得积分10
7秒前
丘比特应助One采纳,获得10
9秒前
9秒前
hantuo发布了新的文献求助10
11秒前
adkdad完成签到,获得积分10
13秒前
笑笑完成签到 ,获得积分10
13秒前
阿宇发布了新的文献求助10
13秒前
NexusExplorer应助明亮的小凡采纳,获得10
14秒前
今后应助星辉斑斓采纳,获得10
15秒前
汉堡包应助星辉斑斓采纳,获得10
15秒前
上官若男应助Aurora采纳,获得10
15秒前
anz完成签到 ,获得积分10
19秒前
我是老大应助weiwei采纳,获得10
19秒前
souther完成签到,获得积分0
19秒前
20秒前
执念完成签到 ,获得积分10
22秒前
小帆帆完成签到,获得积分10
23秒前
简单白风完成签到 ,获得积分10
24秒前
饼干肥熊发布了新的文献求助10
25秒前
25秒前
Lucas应助hantuo采纳,获得10
27秒前
29秒前
123完成签到 ,获得积分10
30秒前
科研fw完成签到 ,获得积分10
33秒前
33秒前
五上村雨完成签到 ,获得积分10
33秒前
伏龙完成签到,获得积分10
34秒前
老福贵儿应助谨慎灭龙采纳,获得10
37秒前
38秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606459
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866330
捐赠科研通 4705808
什么是DOI,文献DOI怎么找? 2542698
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276