Integrating machine learning and digital twin for strength prediction of CFRP/aluminum adhesive joints under hygrothermal conditions

材料科学 胶粘剂 复合材料 结构工程 工程类 图层(电子)
作者
Noor Hadi Aysa,Sajjad Karimi
出处
期刊:Polymer Composites [Wiley]
被引量:2
标识
DOI:10.1002/pc.29928
摘要

Abstract This study investigates the application of machine learning models integrated with a digital twin (DT) framework to predict and correlate the performance of carbon fibre‐reinforced polymer‐to‐aluminum adhesive joints subjected to hygrothermal aging. By combining experimental methods with machine learning techniques, the research aims to bridge the gap between the effects of natural and accelerated aging on adhesive joints. The joints were manufactured and then left to age naturally for a period of one to 3 years. For accelerated aging, the joints were subjected to hygrothermal conditions for a period of four to 50 days. Three‐point bending tests were utilized to evaluate the performance of the joints. To evaluate natural aging periods using accelerated aging data, five machine learning algorithms were used: support vector regression (SVR), artificial neural network (ANN), linear regression, random forest regression (RF) and XGBoost. scanning electron microscopy (SEM) analyses showed that moisture absorption caused a substantial change in the surface morphology of aluminum adherends, including increased roughness and crystalline formations. The results indicated that XGBoost has provided almost perfect predictions since MSE values equal to 0 were observed at all iterations, highlighting its accuracy and reliability. In contrast, the SVR and linear regression models demonstrated much lower accuracy, with clear differences observed in their predictions. The integration of digital twin with machine learning approaches turns out to be the most efficient method of real‐time adaptation of the model as well as accurate performance prediction, enhancing the durability and reliability of the composite structures. Highlights Strength prediction of adhesive joints by using Machine learning and digital twin. SEM revealed moisture‐induced changes in aluminum surface morphology. XGBoost model showed high prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nuyoah完成签到,获得积分20
1秒前
Dandelion完成签到,获得积分10
3秒前
yang完成签到,获得积分10
4秒前
欣慰雪巧完成签到 ,获得积分10
6秒前
REBECCA完成签到 ,获得积分10
6秒前
8秒前
科研通AI5应助LUMOS采纳,获得30
9秒前
9秒前
汉堡包应助卿年采纳,获得10
10秒前
kk完成签到,获得积分10
11秒前
11秒前
13秒前
yoyo20012623发布了新的文献求助10
14秒前
kk发布了新的文献求助10
14秒前
ly0000发布了新的文献求助20
15秒前
Ava应助endlessloop采纳,获得10
16秒前
ding应助Suniex采纳,获得10
17秒前
哈哈一笑完成签到,获得积分10
17秒前
18秒前
Dream发布了新的文献求助10
18秒前
彭于晏应助赐梦采纳,获得10
21秒前
李振博完成签到 ,获得积分10
24秒前
24秒前
研友_VZG7GZ应助guoguo采纳,获得10
25秒前
仇育辉完成签到,获得积分10
26秒前
26秒前
29秒前
Suniex发布了新的文献求助10
30秒前
yang完成签到,获得积分10
30秒前
yuexu发布了新的文献求助50
30秒前
32秒前
34秒前
35秒前
情怀应助雾岛少帅翔掌门采纳,获得10
35秒前
无奈大树发布了新的文献求助10
35秒前
lw发布了新的文献求助10
36秒前
执着尔竹完成签到,获得积分10
37秒前
赐梦发布了新的文献求助10
38秒前
初余发布了新的文献求助10
38秒前
程大大大教授完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777811
求助须知:如何正确求助?哪些是违规求助? 4108948
关于积分的说明 12710755
捐赠科研通 3830833
什么是DOI,文献DOI怎么找? 2113107
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020727