Fast Interfacial Carrier Dynamics Modulated by Bidirectional Charge Transport Channels in ZnIn2S4‐based Composite Photoanodes Probed by Scanning Photoelectrochemical Microscopy

材料科学 纳米技术 半导体 扫描电子显微镜 载流子 分解水 电极 复合数 光电子学 化学物理 化学 光催化 复合材料 生物化学 物理化学 催化作用
作者
Shengya Zhang,Peiyao Du,Hui Xiao,Ze Wang,Rongfang Zhang,Wei Luo,Juan An,Yuling Gao,Bingzhang Lu
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (3): e202315763-e202315763 被引量:20
标识
DOI:10.1002/anie.202315763
摘要

Abstract Limited charge separation/transport efficiency remains the primary obstacle of achieving satisfying photoelectrochemical (PEC) water splitting performance. Therefore, it is essential to develop diverse interfacial engineering strategies to mitigate charge recombination. Despite obvious progress having been made, most works only considered a single‐side modulation in either the electrons of conduction band or the holes of valence band in a semiconductor photoanode, leading to a limited PEC performance enhancement. Beyond this conventional thinking, we developed a novel coupling modification strategy to achieve a composite electrode with bidirectional carrier transport for a better charge separation, in which Ti 2 C 3 T x MXene quantum dots (MQDs) and α‐Fe 2 O 3 nanodots (FO) are anchored on the surface of ZnIn 2 S 4 (ZIS) nanoplates, resulting in markedly improved PEC water splitting of pure ZIS photoanode. Systematic studies indicated that the bidirectional charge transfer pathways were stimulated due to MQDs as “electron extractor” and S−O bonds as carriers transport channels, which synergistically favors significantly enhanced charge separation. The enhanced kinetic behavior at the FO/MQDs/ZIS interfaces was systematically and quantitatively evaluated by a series of methods, especially scanning photoelectrochemical microscopy. This work may deepen our understanding of interfacial charge separation, and provide valuable guidance for the rational design and fabrication of high‐performance composite electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Su发布了新的文献求助10
1秒前
1秒前
自觉草莓发布了新的文献求助10
1秒前
Roy完成签到,获得积分10
1秒前
arizaki7完成签到,获得积分10
1秒前
HH完成签到,获得积分10
1秒前
1秒前
今后应助jm采纳,获得10
2秒前
Fashioner8351完成签到,获得积分10
2秒前
2秒前
2秒前
hh完成签到 ,获得积分10
3秒前
彭佳乐发布了新的文献求助10
3秒前
Owen应助尊敬的盼山采纳,获得10
3秒前
3秒前
nuoyefenfei完成签到,获得积分10
3秒前
3秒前
3秒前
yi发布了新的文献求助10
3秒前
小武发布了新的文献求助10
3秒前
ZjieY完成签到,获得积分10
4秒前
HH发布了新的文献求助10
4秒前
dd发布了新的文献求助10
5秒前
5秒前
5秒前
PYF完成签到,获得积分10
5秒前
5秒前
英吉利25发布了新的文献求助20
5秒前
5秒前
ll77发布了新的文献求助10
6秒前
霜白完成签到,获得积分10
6秒前
xia完成签到,获得积分10
7秒前
7秒前
7秒前
jzmulyl发布了新的文献求助10
7秒前
8秒前
kls发布了新的文献求助10
8秒前
彭佳乐完成签到,获得积分10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803