Evaluating the Effect of Data Merging and Postacquisition Normalization on Statistical Analysis of Untargeted High-Resolution Mass Spectrometry Based Urinary Metabolomics Data

规范化(社会学) 化学 质谱法 分析物 代谢组学 分析化学(期刊) 色谱法 人类学 社会学
作者
F Brix,Tobias Demetrowitsch,Julia Jensen-Kroll,Helena U. Zacharias,Silke Szymczak,Matthias Laudes,Stefan Schreiber,Karin Schwarz
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (1): 33-40 被引量:3
标识
DOI:10.1021/acs.analchem.3c01380
摘要

Urine is one of the most widely used biofluids in metabolomic studies because it can be collected noninvasively and is available in large quantities. However, it shows large heterogeneity in sample concentration and consequently requires normalization to reduce unwanted variation and extract meaningful biological information. Biological samples like urine are commonly measured with electrospray ionization (ESI) coupled to a mass spectrometer, producing data sets for positive and negative modes. Combining these gives a more complete picture of the total metabolites present in a sample. However, the effect of this data merging on subsequent data analysis, especially in combination with normalization, has not yet been analyzed. To address this issue, we conducted a neutral comparison study to evaluate the performance of eight postacquisition normalization methods under different data merging procedures using 1029 urine samples from the Food Chain plus (FoCus) cohort. Samples were measured with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Normalization methods were evaluated by five criteria capturing the ability to remove sample concentration variation and preserve relevant biological information. Merging data after normalization was generally favorable for quality control (QC) sample similarity, sample classification, and feature selection for most of the tested normalization methods. Merging data after normalization and the usage of probabilistic quotient normalization (PQN) in a similar setting are generally recommended. Relying on a single analyte to capture sample concentration differences, like with postacquisition creatinine normalization, seems to be a less preferable approach, especially when data merging is applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LT发布了新的文献求助10
1秒前
龅牙苏完成签到,获得积分10
2秒前
2秒前
2秒前
研友_ngqQE8完成签到 ,获得积分10
3秒前
华青ww完成签到,获得积分10
3秒前
思源应助干冷安采纳,获得20
4秒前
酷波er应助英俊的小恐龙采纳,获得10
4秒前
hello发布了新的文献求助10
5秒前
生科爱好者完成签到,获得积分20
5秒前
5秒前
wang完成签到,获得积分10
5秒前
柚子发布了新的文献求助10
6秒前
6秒前
研友_ngqQE8关注了科研通微信公众号
6秒前
猫捡球完成签到,获得积分10
7秒前
打打应助Nelson采纳,获得10
8秒前
laughing完成签到,获得积分10
9秒前
Fab4发布了新的文献求助10
10秒前
11秒前
11秒前
李爱国应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
coolkid应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
hello完成签到,获得积分10
13秒前
13秒前
大模型应助北川采纳,获得10
13秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906331
求助须知:如何正确求助?哪些是违规求助? 3452107
关于积分的说明 10867485
捐赠科研通 3177533
什么是DOI,文献DOI怎么找? 1755484
邀请新用户注册赠送积分活动 848801
科研通“疑难数据库(出版商)”最低求助积分说明 791294