Artificial intelligence-based model for recurrence prediction after local excision on whole slide images in T1 low rectal cancer.

医学 结直肠癌 接收机工作特性 置信区间 外科 癌症 队列 结肠癌 放射科 内科学
作者
Chengzhi Huang,Jiarui Su,Xueqing Yao
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (3_suppl): 24-24
标识
DOI:10.1200/jco.2024.42.3_suppl.24
摘要

24 Background: According to current guidelines, patients with resected specimens showing high-risk features are recommended for additional surgery after local excision of T1 colorectal cancer, despite the low incidence (~7%) of recurrence. However, surgical resection in patients with low rectal cancer (RC) is challenging and may compromise anal function, leading to a low quality of life. To reduce unnecessary surgical resection for these patients, we utilized artificial intelligence to develop and validate a prediction model for the risk of recurrence in T1 low rectal cancer patients. Methods: H&E-stained whole slide images (WSIs) were scanned for local excision (endoscopically or transanally minimally) specimens of 507 consecutive patients with T1 low rectal cancers that were locally resected at 4 hospitals between 2005 and 2015. The area under the receiver operating characteristic curve (AUROC), specificity and sensitivity were used to evaluate the performance of the model for the risk of recurrence, and an external validation cohort was to verify the applicability of the model. Results: We constructed a prediction model using convolutional neural networks (CNN) without incorporating clinical features. The model yielded good discrimination and calibration, achieving a 5-year recurrence-free survival AUROC of 0.90 (95% confidence interval [CI]: 0.86–0.93), sensitivity of 0.91 (95% CI: 0.84–0.96), and specificity of 0.82 (95% CI: 0.78–0.88) through fivefold cross-validation. Additionally, the AI avoided 25.7% of unnecessary additional surgery compared to the current guidelines. Conclusions: We proposed a novel prediction model for the risk of recurrence in T1 low RC patients to assist physicians in determining whether additional surgery is required after local excision of T1 low RC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助裴帅龙采纳,获得10
刚刚
刚刚
今后应助汝坤采纳,获得10
刚刚
共享精神应助猪猪hero采纳,获得10
1秒前
852应助H.采纳,获得10
1秒前
kaili完成签到 ,获得积分10
1秒前
科目三应助zzzzzzz采纳,获得10
1秒前
LZY完成签到,获得积分10
1秒前
半盏完成签到,获得积分10
2秒前
2秒前
2秒前
JamesPei应助贾舒涵采纳,获得10
2秒前
3秒前
fpy完成签到,获得积分10
3秒前
黑猫小苍完成签到,获得积分10
3秒前
Limbo完成签到,获得积分10
4秒前
DrComplex发布了新的文献求助10
4秒前
深情安青应助Chunyan_Yu采纳,获得10
4秒前
街道办柏阿姨完成签到 ,获得积分10
4秒前
不想干活应助YangSY采纳,获得10
5秒前
6秒前
飞翔的霸天哥应助ddd采纳,获得30
6秒前
不知道起什么好完成签到,获得积分20
7秒前
啦啦啦完成签到,获得积分10
7秒前
whisper完成签到,获得积分20
9秒前
Limbo发布了新的文献求助10
9秒前
FKVB_完成签到 ,获得积分10
9秒前
Paula_xr完成签到 ,获得积分10
9秒前
10秒前
小蘑菇应助柚子采纳,获得10
11秒前
11秒前
freedom313514完成签到,获得积分10
12秒前
苁蓉远志完成签到 ,获得积分10
13秒前
L7.完成签到,获得积分10
13秒前
13秒前
14秒前
Edward完成签到,获得积分10
14秒前
14秒前
阿Q完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
全球及中国7nm节点及以下先进制程技术行业市场发展现状及发展前景研究报告(2025-2030版) 1000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4487901
求助须知:如何正确求助?哪些是违规求助? 3942454
关于积分的说明 12226526
捐赠科研通 3599185
什么是DOI,文献DOI怎么找? 1979336
邀请新用户注册赠送积分活动 1016214
科研通“疑难数据库(出版商)”最低求助积分说明 909375