Recent advancements in thermal conductivity of magnesium alloys

材料科学 热导率 合金 复合材料
作者
Hao Lv,Jun Tan,Qian Yuan,Fanglei Wang,Yunxuan Zhou,Quan Dong,Aitao Tang,J. Eckert,Bin Jiang,Fusheng Pan
出处
期刊:Journal of Magnesium and Alloys [Elsevier BV]
卷期号:12 (5): 1687-1708 被引量:10
标识
DOI:10.1016/j.jma.2024.02.007
摘要

As highly integrated circuits continue to advance, accompanied by a growing demand for energy efficiency and weight reduction, materials are confronted with mounting challenges pertaining to thermal conductivity and lightweight properties. By virtue of numerous intrinsic mechanisms, as a result, the thermal conductivity and mechanical properties of the Mg alloys are often inversely related, which becomes a bottleneck limiting the application of Mg alloys. Based on several effective modification methods to improve the thermal conductivity of Mg alloys, this paper describes the law of how they affect the mechanical properties, and clearly indicates that peak aging treatment is one of the best ways to simultaneously enhance an alloy's thermal conductivity and mechanical properties. As the most frequently used Mg alloy, cast alloys exhibit substantial potential for achieving high thermal conductivity. Moreover, recent reports indicate that hot deformation can significantly improve the mechanical properties while maintaining, and potentially slightly enhancing, the alloy's thermal conductivity. This presents a meaningful way to develop Mg alloys for applications in the field of small-volume heat dissipation components that require high strength. This comprehensive review begins by outlining standard testing and prediction methods, followed by the theoretical models used to predict thermal conductivity, and then explores the primary influencing factors affecting thermal conductivity. The review summarizes the current development status of Mg alloys, focusing on the quest for alloys that offer both high thermal conductivity and high strength. It concludes by providing insights into forthcoming prospects and challenges within this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
000完成签到,获得积分20
刚刚
刚刚
whl发布了新的文献求助10
刚刚
1秒前
研友_nqaBGn发布了新的文献求助10
1秒前
月亮门儿完成签到 ,获得积分10
1秒前
领导范儿应助曾无忧采纳,获得10
2秒前
mj发布了新的文献求助10
2秒前
隐形曼青应助侃侃采纳,获得10
3秒前
3秒前
演变发布了新的文献求助10
4秒前
4秒前
5秒前
primavere发布了新的文献求助10
5秒前
艺术家发布了新的文献求助10
5秒前
向言之发布了新的文献求助10
5秒前
asdfghjkl应助makus采纳,获得10
5秒前
6秒前
6秒前
彭于晏应助飞快的芷雪采纳,获得10
6秒前
Ehgnix发布了新的文献求助10
7秒前
LYS完成签到,获得积分10
7秒前
beizi发布了新的文献求助10
7秒前
糊涂的剑发布了新的文献求助10
8秒前
mj完成签到,获得积分10
8秒前
晃悠猴发布了新的文献求助10
9秒前
9秒前
研友_nqaBGn完成签到,获得积分10
10秒前
10秒前
研友_LNMmW8发布了新的文献求助10
11秒前
11秒前
12秒前
李阿拉完成签到,获得积分10
12秒前
yznfly应助heyingjie采纳,获得20
12秒前
13秒前
科研废物完成签到 ,获得积分10
13秒前
zqx完成签到,获得积分10
13秒前
演变完成签到,获得积分10
13秒前
艺术家完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932956
求助须知:如何正确求助?哪些是违规求助? 3477753
关于积分的说明 10998957
捐赠科研通 3208127
什么是DOI,文献DOI怎么找? 1772715
邀请新用户注册赠送积分活动 860008
科研通“疑难数据库(出版商)”最低求助积分说明 797433