Recent advancements in thermal conductivity of magnesium alloys

材料科学 热导率 合金 复合材料
作者
Hao Lv,Jun Tan,Qian Yuan,Fanglei Wang,Yunxuan Zhou,Quan Dong,Aitao Tang,J. Eckert,Bin Jiang,Fusheng Pan
出处
期刊:Journal of Magnesium and Alloys [Elsevier]
卷期号:12 (5): 1687-1708 被引量:57
标识
DOI:10.1016/j.jma.2024.02.007
摘要

As highly integrated circuits continue to advance, accompanied by a growing demand for energy efficiency and weight reduction, materials are confronted with mounting challenges pertaining to thermal conductivity and lightweight properties. By virtue of numerous intrinsic mechanisms, as a result, the thermal conductivity and mechanical properties of the Mg alloys are often inversely related, which becomes a bottleneck limiting the application of Mg alloys. Based on several effective modification methods to improve the thermal conductivity of Mg alloys, this paper describes the law of how they affect the mechanical properties, and clearly indicates that peak aging treatment is one of the best ways to simultaneously enhance an alloy's thermal conductivity and mechanical properties. As the most frequently used Mg alloy, cast alloys exhibit substantial potential for achieving high thermal conductivity. Moreover, recent reports indicate that hot deformation can significantly improve the mechanical properties while maintaining, and potentially slightly enhancing, the alloy's thermal conductivity. This presents a meaningful way to develop Mg alloys for applications in the field of small-volume heat dissipation components that require high strength. This comprehensive review begins by outlining standard testing and prediction methods, followed by the theoretical models used to predict thermal conductivity, and then explores the primary influencing factors affecting thermal conductivity. The review summarizes the current development status of Mg alloys, focusing on the quest for alloys that offer both high thermal conductivity and high strength. It concludes by providing insights into forthcoming prospects and challenges within this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Charming完成签到,获得积分10
4秒前
7秒前
7秒前
8秒前
脑袋空空发布了新的文献求助10
12秒前
sujiaoziemo完成签到,获得积分10
15秒前
15秒前
慕青应助迷你的新之采纳,获得10
18秒前
栗子完成签到,获得积分10
21秒前
脑袋空空完成签到,获得积分10
21秒前
共享精神应助wwwjqw采纳,获得10
24秒前
25秒前
27秒前
勤恳洙应助VESong采纳,获得30
28秒前
勤恳洙应助VESong采纳,获得30
28秒前
29秒前
可爱的函函应助山楂采纳,获得10
30秒前
吧唧吧唧完成签到,获得积分10
30秒前
31秒前
莱茵完成签到,获得积分10
32秒前
Csy发布了新的文献求助10
32秒前
英俊的铭应助范范778采纳,获得10
33秒前
无限的FF发布了新的文献求助30
33秒前
dcx完成签到 ,获得积分10
39秒前
岁月见完成签到,获得积分10
42秒前
42秒前
yuyu应助临河盗龙采纳,获得10
42秒前
44秒前
yznfly应助害怕的白竹采纳,获得50
45秒前
tk完成签到 ,获得积分10
45秒前
45秒前
岁月见发布了新的文献求助10
46秒前
46秒前
流光发布了新的文献求助10
48秒前
深情安青应助dcx采纳,获得10
48秒前
48秒前
kiki完成签到,获得积分10
49秒前
一号小玩家完成签到,获得积分10
50秒前
zxer发布了新的文献求助10
51秒前
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868957
求助须知:如何正确求助?哪些是违规求助? 6446870
关于积分的说明 15659847
捐赠科研通 4984593
什么是DOI,文献DOI怎么找? 2688069
邀请新用户注册赠送积分活动 1630530
关于科研通互助平台的介绍 1588603