Recent developments and current trends on catalytic dry reforming of Methane: Hydrogen Production, thermodynamics analysis, techno feasibility, and machine learning

制氢 电流(流体) 甲烷 二氧化碳重整 热力学 生产(经济) 生化工程 甲烷转化炉 工艺工程 催化作用 化学 蒸汽重整 环境科学 工程类 经济 物理 合成气 有机化学 宏观经济学
作者
Mohammed Mosaad Awad,Esraa Kotob,Omer Ahmed Taialla,Ijaz Hussain,Saheed A. Ganiyu,Khalid Alhooshani
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:304: 118252-118252 被引量:42
标识
DOI:10.1016/j.enconman.2024.118252
摘要

Dry reforming of methane (DRM) offers a promising pathway for sustainable fuel production by converting greenhouse gases, including CO2 and CH4, into valuable syngas (H2 and CO). However, the scalability of DRM technology remains a challenge due to the inherent stability of CO2 and CH4, necessitating the development of robust catalytic systems. While considerable efforts have been dedicated to investigating efficient DRM catalysts, there is an urgent need for a comprehensive review of the current state of research. This study aims to provide a comprehensive understanding of the intrinsic and extrinsic interactions among catalytic components, such as active metals and support materials, to enhance catalytic performance in DRM. The effectiveness of catalysts in DRM depends on various factors, including the selection of support materials, active phases, synthetic techniques, and reactor configurations. This investigation explores the impact of these factors on the catalytic performance and stability of specific catalysts. To achieve an economical catalyst with sustained activity and stability, this review examines the strategic utilization of synergistic interactions between noble, non-noble metals, and/or supports, leading to the development of catalysts. Additionally, the utilization of machine learning (ML) techniques, employing data-driven prediction models based on artificial intelligence, enables the modeling of DRM catalysts. ML technology offers benefits such as improved accuracy, time efficiency, and accelerated exploration of catalytic systems. Overall, this review serves as a fundamental resource for advancing catalyst design in DRM, facilitating effective communication and knowledge exchange within academic and commercial sectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aurora完成签到,获得积分10
2秒前
岘屿发布了新的文献求助30
3秒前
科研通AI5应助一只呆猫er采纳,获得10
4秒前
平淡树叶发布了新的文献求助10
4秒前
爆米花应助能干松思采纳,获得10
6秒前
6秒前
cmm发布了新的文献求助10
7秒前
浮游应助lucas采纳,获得10
8秒前
杨可言完成签到,获得积分10
8秒前
研友_VZG7GZ应助小狗味儿采纳,获得10
9秒前
10秒前
11秒前
浮游应助小燕子采纳,获得10
11秒前
杨小羊完成签到 ,获得积分10
12秒前
科研通AI5应助可爱尔冬采纳,获得30
12秒前
科研通AI6应助ADChem_JH采纳,获得10
13秒前
大气灵枫完成签到,获得积分10
14秒前
111发布了新的文献求助10
15秒前
CodeCraft应助平淡树叶采纳,获得10
15秒前
帅气羊完成签到 ,获得积分10
15秒前
扒开皮皮发布了新的文献求助10
15秒前
Tammy完成签到,获得积分10
16秒前
Lucas应助fanger采纳,获得10
16秒前
李健的小迷弟应助蒋蒋采纳,获得10
17秒前
17秒前
19秒前
Lily完成签到,获得积分10
19秒前
21秒前
莫春莹完成签到 ,获得积分10
21秒前
Unlung完成签到,获得积分10
21秒前
盛清让完成签到,获得积分10
22秒前
11111完成签到,获得积分10
22秒前
Lily发布了新的文献求助10
22秒前
科研通AI5应助刘美婷采纳,获得10
23秒前
24秒前
mangata完成签到,获得积分10
24秒前
sun秦发布了新的文献求助10
25秒前
111完成签到,获得积分20
26秒前
英俊的铭应助11111采纳,获得10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979346
求助须知:如何正确求助?哪些是违规求助? 4232056
关于积分的说明 13181928
捐赠科研通 4022988
什么是DOI,文献DOI怎么找? 2201089
邀请新用户注册赠送积分活动 1213529
关于科研通互助平台的介绍 1129767