Separate first, then segment: An integrity segmentation network for salient object detection

分割 人工智能 计算机科学 计算机视觉 像素 突出 对象(语法) 边界(拓扑) 骨料(复合) GSM演进的增强数据速率 模式识别(心理学) 数学 数学分析 材料科学 复合材料
作者
Ge Zhu,Jinbao Li,Yahong Guo
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:150: 110328-110328 被引量:5
标识
DOI:10.1016/j.patcog.2024.110328
摘要

Current methods aggregate multi-level features or introduce auxiliary information to get more refined saliency maps. However, little attention is paid to how to obtain complete salient objects in cluttered background. To address this problem, we propose an integrity segmentation network (ISNet) with a novel detection paradigm that first separates the targets completely and then segment them finely. Specifically, the ISNet architecture consists of a target separation (TS) branch and an object segmentation (OS) branch, trained using a hierarchical difference-aware (HDA) loss. The TS branch equipped with a fractal structure is utilized to produce saliency features with expanded boundary (SF w/ EB), which can enlarge the difference of border details to separate the target from background completely. Compared with the edge and skeleton information, the SF w/ EB contains a more complete structure, which can supplement the defect of salient objects. The OS branch is leveraged to generate complementary features, which gradually integrates the SF w/ EB and aggregated features to segment complete saliency maps. Moreover, we propose the HDA loss to further improve the structural integrity of prediction, which hierarchically assigns weight to pixels according to their differences. Hard pixels will be given more attention to discriminate the similar parts between foreground and background. Comprehensive experimental results on five datasets show that the proposed ISNet outperforms the state-of-the-art methods both quantitatively and qualitatively. Concretely, compared with three typical models, the average gain percentage reaches 2.6% in terms of Fβ, Sm and MAE on two large complex datasets. The improvements demonstrate that the proposed ISNet are beneficial for improving the integrity of prediction. Besides, the ISNet is efficient and runs at a real-time speed of 39.5 FPS when processing an image with size of 320 × 320. Furthermore, the proposed model has better generalization, which can also be applied to other vision tasks to handle complex scenes. Codes are available at https://github.com/lesonly/ISNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅大白菜真实的钥匙完成签到,获得积分10
刚刚
危机的慕卉完成签到 ,获得积分10
刚刚
Lucifer完成签到,获得积分10
刚刚
啵啵小白完成签到,获得积分20
1秒前
张亨彬完成签到,获得积分10
1秒前
张靖超完成签到 ,获得积分10
2秒前
123456关注了科研通微信公众号
2秒前
小Q啊啾发布了新的文献求助10
2秒前
华仔应助超级傲安采纳,获得30
2秒前
Hyc28441711完成签到,获得积分10
2秒前
冷静的天与完成签到,获得积分20
3秒前
WZZZZ完成签到,获得积分10
3秒前
爱听歌的寄云完成签到,获得积分10
3秒前
zhenliu发布了新的文献求助10
4秒前
奋斗藏花完成签到,获得积分10
4秒前
CR7应助RONG采纳,获得20
4秒前
852应助Reedy采纳,获得10
5秒前
duolaAmeng完成签到,获得积分10
5秒前
yyc完成签到,获得积分10
5秒前
bbanshan完成签到,获得积分10
6秒前
爆米花应助Cpp采纳,获得10
7秒前
8秒前
梨花雨凉完成签到 ,获得积分10
9秒前
章半仙完成签到,获得积分10
9秒前
关关过完成签到,获得积分0
9秒前
科研通AI2S应助甜甜秋荷采纳,获得10
9秒前
Jason完成签到,获得积分10
9秒前
10秒前
10秒前
Lin_Yongqi完成签到 ,获得积分10
10秒前
clientprogram应助dovedd采纳,获得20
10秒前
江小鱼在查文献完成签到,获得积分10
10秒前
10秒前
科研狗仔队完成签到,获得积分10
11秒前
12秒前
轻松的璐啦啦完成签到 ,获得积分10
12秒前
SYLH应助小Q啊啾采纳,获得10
12秒前
Darius应助小Q啊啾采纳,获得10
12秒前
zwd完成签到 ,获得积分10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934751
求助须知:如何正确求助?哪些是违规求助? 3480183
关于积分的说明 11007954
捐赠科研通 3210148
什么是DOI,文献DOI怎么找? 1774043
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797869