Separate first, then segment: An integrity segmentation network for salient object detection

分割 人工智能 计算机科学 计算机视觉 像素 突出 对象(语法) 边界(拓扑) 骨料(复合) GSM演进的增强数据速率 模式识别(心理学) 数学 数学分析 材料科学 复合材料
作者
Ge Zhu,Jinbao Li,Yahong Guo
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:150: 110328-110328 被引量:5
标识
DOI:10.1016/j.patcog.2024.110328
摘要

Current methods aggregate multi-level features or introduce auxiliary information to get more refined saliency maps. However, little attention is paid to how to obtain complete salient objects in cluttered background. To address this problem, we propose an integrity segmentation network (ISNet) with a novel detection paradigm that first separates the targets completely and then segment them finely. Specifically, the ISNet architecture consists of a target separation (TS) branch and an object segmentation (OS) branch, trained using a hierarchical difference-aware (HDA) loss. The TS branch equipped with a fractal structure is utilized to produce saliency features with expanded boundary (SF w/ EB), which can enlarge the difference of border details to separate the target from background completely. Compared with the edge and skeleton information, the SF w/ EB contains a more complete structure, which can supplement the defect of salient objects. The OS branch is leveraged to generate complementary features, which gradually integrates the SF w/ EB and aggregated features to segment complete saliency maps. Moreover, we propose the HDA loss to further improve the structural integrity of prediction, which hierarchically assigns weight to pixels according to their differences. Hard pixels will be given more attention to discriminate the similar parts between foreground and background. Comprehensive experimental results on five datasets show that the proposed ISNet outperforms the state-of-the-art methods both quantitatively and qualitatively. Concretely, compared with three typical models, the average gain percentage reaches 2.6% in terms of Fβ, Sm and MAE on two large complex datasets. The improvements demonstrate that the proposed ISNet are beneficial for improving the integrity of prediction. Besides, the ISNet is efficient and runs at a real-time speed of 39.5 FPS when processing an image with size of 320 × 320. Furthermore, the proposed model has better generalization, which can also be applied to other vision tasks to handle complex scenes. Codes are available at https://github.com/lesonly/ISNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安东尼发布了新的文献求助10
2秒前
万能图书馆应助爱笑的岩采纳,获得10
2秒前
lhy完成签到,获得积分10
3秒前
您好发布了新的文献求助10
3秒前
biosep完成签到,获得积分10
4秒前
川农辅导员完成签到,获得积分10
4秒前
蔬菜人完成签到,获得积分10
5秒前
灵巧的傲柏完成签到,获得积分20
8秒前
研友_nPKvaL完成签到,获得积分10
12秒前
13秒前
14秒前
orixero应助Trista采纳,获得10
17秒前
Lucas应助博修采纳,获得10
18秒前
余yu发布了新的文献求助30
18秒前
爱笑的岩发布了新的文献求助10
20秒前
23秒前
Leukocyte完成签到 ,获得积分10
24秒前
大漂亮完成签到,获得积分20
25秒前
FelixChen应助机灵的觅山采纳,获得10
26秒前
咕咕咕发布了新的文献求助10
27秒前
gypsy完成签到,获得积分10
28秒前
坚定醉蓝发布了新的文献求助10
31秒前
思源应助wei采纳,获得10
34秒前
科研通AI2S应助qianshu采纳,获得10
34秒前
不会游泳的鱼完成签到 ,获得积分10
35秒前
Frost完成签到,获得积分10
36秒前
烟花应助懒兰采纳,获得10
37秒前
可爱霖霖完成签到,获得积分10
37秒前
张梦阳发布了新的文献求助10
38秒前
39秒前
40秒前
小张完成签到,获得积分10
41秒前
acd完成签到,获得积分10
42秒前
44秒前
夏天的倒影完成签到,获得积分10
44秒前
wei完成签到,获得积分10
45秒前
隐形曼青应助persist采纳,获得10
46秒前
CipherSage应助阿九采纳,获得10
46秒前
咕咕咕发布了新的文献求助10
47秒前
万能图书馆应助gypsy采纳,获得10
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451