The prediction of residual stress of welding process based on Deep Neural Network

材料科学 残余应力 人工神经网络 焊接 压力(语言学) 过程(计算) 残余物 冶金 复合材料 人工智能 计算机科学 算法 语言学 哲学 操作系统
作者
Yuli Qin,Chun-Wei Ma,Mei Lin,Yuan Fang,Yi Zhao
出处
期刊:Materials today communications [Elsevier BV]
卷期号:39: 108595-108595
标识
DOI:10.1016/j.mtcomm.2024.108595
摘要

The welding process has been an efficient method for producing essential and complex manufacturing parts in various industrial design fields. The post-weld residual stress can have detrimental effects on welded components. Therefore, systematic studies of residual stress are essential for evaluating welding behaviors and mechanisms in welded structures. They can provide a valuable reference and optimization for addressing residual stress relief. Numerical finite element analyses based on thermal-mechanical models offer a comprehensive approach to simulate real welding, providing a reliable means to determine and quantify the distribution of residual stress based on welding parameters and material properties. Furthermore, the finite element analysis is capable of generating adequate and dependable datasets in relation to the classical experiment. However, the finite element simulation is not considered an efficient method for predicting the magnitude and distortion of residual stress due to its high computational cost. A deep learning framework with powerful automatic learning abilities could potentially be used as an alternative method to efficiently predict residual stress. The purpose of the current study is to propose an innovative modeling approach for accurately and effectively predicting residual stress. A deep network model with Convolutional Neural Network using Adam optimization is integrated with numerical finite element analyses of a single-pass beam weld in SUS304 stainless steel. Finite element analysis is used to generate extensive residual stress datasets, which are partly used to train the deep network model and partly used for model validation. The deep network model aligns closely with the finite element analysis results, with a root-mean-square error (RMSE) of less than 12, an absolute fraction of variation (R2) of greater than 0.95, a mean absolute error (MAE) of less than 6.8 and a mean absolute percentage error (MAPE) of less than 1.1. Furthermore, this study highlights the potential advantage of using a deep network model with strong memory capabilities to directly predict residual stress for identical structural components and welding processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助jane采纳,获得10
1秒前
chenmeimei2012完成签到,获得积分10
1秒前
1秒前
JT完成签到,获得积分10
1秒前
腰果虾仁完成签到 ,获得积分10
1秒前
乘风破浪完成签到,获得积分10
3秒前
万能图书馆应助烁烁采纳,获得10
4秒前
wanci应助666采纳,获得10
7秒前
jane完成签到,获得积分20
10秒前
lily完成签到,获得积分10
10秒前
kaiyin关注了科研通微信公众号
11秒前
11秒前
木小紫发布了新的文献求助10
12秒前
Lucky_Dog完成签到 ,获得积分10
13秒前
追寻的煎蛋完成签到,获得积分10
13秒前
14秒前
英俊的铭应助拓跋涵易采纳,获得10
14秒前
14秒前
LRJ完成签到,获得积分10
15秒前
FXe完成签到,获得积分10
18秒前
wujuan1606发布了新的文献求助10
18秒前
丘比特应助lucky采纳,获得10
19秒前
pl发布了新的文献求助10
21秒前
在水一方应助李金金采纳,获得10
23秒前
小昏完成签到,获得积分10
26秒前
李健应助博修采纳,获得10
26秒前
ohooo完成签到,获得积分20
27秒前
狗子心中的梦完成签到,获得积分20
28秒前
28秒前
852应助斐波拉切土豆采纳,获得10
28秒前
28秒前
29秒前
29秒前
30秒前
ohooo发布了新的文献求助10
31秒前
缓慢灵安发布了新的文献求助10
31秒前
31秒前
kaiyin发布了新的文献求助10
31秒前
天天快乐应助guozizi采纳,获得10
32秒前
32秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903533
求助须知:如何正确求助?哪些是违规求助? 3448280
关于积分的说明 10852673
捐赠科研通 3173796
什么是DOI,文献DOI怎么找? 1753545
邀请新用户注册赠送积分活动 847767
科研通“疑难数据库(出版商)”最低求助积分说明 790458