EEG-based assessment of driver trust in automated vehicles

计算机科学 脑电图 特征(语言学) 人工智能 机器学习 驾驶模拟器 大脑活动与冥想 模式识别(心理学) 心理学 神经科学 语言学 哲学
作者
Tingru Zhang,Jinfeng Yang,Milei Chen,Zetao Li,Jing Zang,Xingda Qu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 123196-123196 被引量:7
标识
DOI:10.1016/j.eswa.2024.123196
摘要

Effective collaboration between automated vehicles (AVs) and human drivers relies on maintaining an appropriate level of trust. However, real-time assessment of human trust remains a significant challenge. While initial efforts have delved into the potential use of physiological signals, such as skin conductance and heart rate, to evaluate trust, limited attention has been given to the feasibility of assessing trust through electroencephalogram (EEG) signals. This study aimed to address this issue by using EEG signals to objectively assess driver trust towards AVs. A simulated driving experiment was conducted, where driver trust was manipulated by introducing different types of AV malfunctions. Self-reported trust ratings were collected and used to classify driver trust into three levels: low, medium, and high. A total of 420 time- and frequency-domain EEG features were extracted, and nine machine learning algorithms were applied to construct driver trust assessment models. Additionally, to explore the potential of developing cost-effective models with reduced feature inputs, this study developed trust models using features solely from single brain regions: frontal, parietal, occipital, or temporal. The results showed that the best-performing model, utilizing features from the whole brain and employing the Light Gradient Boosting Machine (LightGBM) algorithm, achieved an accuracy of 88.44% and an F1-score of 78.31%. In comparison, models based on single brain regions did not achieve comparable performance to the comprehensive model. However, the frontal and parietal regions showed important potentials for developing cost-effective trust assessment models. This study also performed feature analysis on the best-performing model to identify features highly responsive to changes in trust. The results showed that an increased power of beta waves tended to indicate a lower level of trust in AVs. These findings contribute to our understanding of the neural correlates of trust in AVs and hold practical implications for the development of trust-aware AV technologies capable of adapting and responding to the driver's trust levels effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨芯发布了新的文献求助10
刚刚
美满的金连完成签到 ,获得积分10
1秒前
科研通AI5应助317采纳,获得10
3秒前
怕孤单的思雁完成签到,获得积分10
4秒前
4秒前
bc应助666采纳,获得50
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
不倦应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
不倦应助科研通管家采纳,获得10
5秒前
可爱大地发布了新的文献求助10
5秒前
5秒前
大气亦巧完成签到,获得积分10
8秒前
落后书竹发布了新的文献求助10
9秒前
复杂念梦发布了新的文献求助10
11秒前
15秒前
第9527号文明完成签到,获得积分10
15秒前
CZF完成签到 ,获得积分10
16秒前
17秒前
18秒前
天天快乐应助科研小白采纳,获得10
19秒前
Whassupww完成签到,获得积分10
20秒前
22秒前
李德胜完成签到,获得积分10
22秒前
ziliz发布了新的文献求助10
23秒前
领导范儿应助大气问枫采纳,获得10
25秒前
blacksmith0发布了新的文献求助10
25秒前
28秒前
28秒前
wanci应助吴1采纳,获得10
29秒前
复杂念梦发布了新的文献求助10
29秒前
orixero应助追寻紫安采纳,获得10
30秒前
marco完成签到,获得积分10
31秒前
乐乐应助AlexLee采纳,获得10
31秒前
科研通AI5应助ziliz采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522