Development of a Deep-Learning Model for Diagnosing Lumbar Spinal Stenosis Based on CT Images

医学 腰椎 分级(工程) 腰椎管狭窄症 磁共振成像 放射科 医学诊断 狭窄 数据集 椎管狭窄 卷积神经网络 人工智能 计算机科学 工程类 土木工程
作者
Kaiyu Li,Junjie Weng,Hua-Lin Li,Hao-Bo Ye,Jianwei Xiang,Naifeng Tian
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:49 (12): 884-891 被引量:5
标识
DOI:10.1097/brs.0000000000004903
摘要

Study Design. Retrospective study. Objectives. This study aimed to develop an initial deep-learning (DL) model based on computerized tomography (CT) scans for diagnosing lumbar spinal stenosis. Summary of Background Data. Magnetic resonance imaging is commonly used for diagnosing lumbar spinal stenosis due to its high soft tissue resolution, but CT is more portable, cost-effective, and has wider regional coverage. Using DL models to improve the accuracy of CT diagnosis can effectively reduce missed diagnoses and misdiagnoses in clinical practice. Materials and Methods. Axial lumbar spine CT scans obtained between March 2022 and September 2023 were included. The data set was divided into a training set (62.3%), a validation set (22.9%), and a control set (14.8%). All data were labeled by two spine surgeons using the widely accepted grading system for lumbar spinal stenosis. The training and validation sets were used to annotate the regions of interest by the two spine surgeons. First, a region of interest detection model and a convolutional neural network classifier were trained using the training set. After training, the model was preliminarily evaluated using a validation set. Finally, the performance of the DL model was evaluated on the control set, and a comparison was made between the model and the classification performance of specialists with varying levels of experience. Results. The central stenosis grading accuracies of DL Model Version 1 and DL Model Version 2 were 88% and 83%, respectively. The lateral recess grading accuracies of DL Model Version 1 and DL Model Version 2 were 75% and 71%, respectively. Conclusions. Our preliminarily developed DL system for assessing the degree of lumbar spinal stenosis in CT, including the central canal and lateral recess, has shown similar accuracy to experienced specialist physicians. This holds great value for further development and clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
陈爽er完成签到,获得积分20
3秒前
缓慢海蓝完成签到 ,获得积分10
3秒前
科研狗发布了新的文献求助20
5秒前
软绵绵发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
HJY完成签到,获得积分20
6秒前
7秒前
忧心的白开水完成签到,获得积分20
7秒前
石头发布了新的文献求助10
7秒前
7秒前
星辰大海应助尼莫采纳,获得10
8秒前
小嘉发布了新的文献求助10
10秒前
12秒前
13秒前
默笙完成签到,获得积分10
13秒前
123456驳回了赘婿应助
13秒前
haha发布了新的文献求助30
14秒前
MchemG应助诚心之桃采纳,获得20
14秒前
石头完成签到,获得积分10
14秒前
小马甲应助如初采纳,获得10
14秒前
huyaoqi完成签到 ,获得积分10
15秒前
杜萌萌发布了新的文献求助10
15秒前
桐桐应助msk采纳,获得10
15秒前
盼盼完成签到 ,获得积分10
16秒前
16秒前
小贾博士发布了新的文献求助10
17秒前
17秒前
万能图书馆应助寂寞的灵采纳,获得10
17秒前
小嘉完成签到,获得积分10
18秒前
子南完成签到,获得积分10
18秒前
18秒前
www发布了新的文献求助10
18秒前
聪慧的凡灵应助前行的灿采纳,获得20
19秒前
22秒前
吴晨曦完成签到 ,获得积分10
22秒前
一只小马驹完成签到,获得积分10
22秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888673
求助须知:如何正确求助?哪些是违规求助? 3431027
关于积分的说明 10772227
捐赠科研通 3156037
什么是DOI,文献DOI怎么找? 1742835
邀请新用户注册赠送积分活动 841413
科研通“疑难数据库(出版商)”最低求助积分说明 785917