Machine learning combined with multi-source data fusion for rapid quality assessment of yellow rice wine with different aging years

葡萄酒 质量(理念) 模式识别(心理学) 机器学习 芳香 计算机科学 人工智能 化学 食品科学 认识论 哲学
作者
Zhi‐Tong Zhang,Yu Li,Lei Bai,Pan Chen,Yue Jiang,Yali Qi,Huanhuan Guan,Yaxuan Liang,Dongping Yuan,Tulin Lu,Guojun Yan
出处
期刊:Microchemical Journal [Elsevier]
卷期号:199: 110126-110126 被引量:13
标识
DOI:10.1016/j.microc.2024.110126
摘要

Aging is a crucial factor for high-quality alcoholic beverages, which improves the flavor of alcoholic beverages such as yellow rice wine (YRW). However, traditional analytical methods for evaluating the quality of YRW are very tedious, and there is still a lack of rapid quality assessment methods for YRW with different aging times. In this study, taking Jimo rice wine (JRW, a representative YRW in northern China) with different aging years as the object, traditional analytical methods and various antioxidant experiments were used to characterize their quality differences, a rapid quality evaluation method was established by machine learning combining with the data obtained from Flash GC e-nose and near-infrared. The results showed multiple physicochemical parameters coupled with multivariate statistical analysis could distinguish JRW with diverse aging years. JRW with different aging years also showed various antioxidant capacities and generally increased with the aged years. A total of 24 major aroma components were identified in JRW, of which five varied regularly with aging time. Then, the deep learning algorithm (long short-term memory, LSTM) showed excellent classification performance (100% accuracy) in JRW with different aging years, and a multi-source information fusion strategy can achieve 100% classification accuracy even when combined with traditional algorithms. Finally, the fused data improved the accuracy of the LSTM regression model in predicting the content of the main physicochemical parameters of JRW, with higher R2 and lower RMSE compared to data from a single source. Overall, this study clarified the quality differences of JRW with diverse aging years, and a rapid and precise method combining multi-source data fusion and machine learning was developed to assess the quality of JRW, which could also apply to other beverages or foods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗷唔一口吃掉完成签到,获得积分10
2秒前
3秒前
马志青完成签到,获得积分10
3秒前
3秒前
Ting发布了新的文献求助10
3秒前
4秒前
天雨流芳发布了新的文献求助10
4秒前
4秒前
wanci应助haha采纳,获得10
4秒前
5秒前
5秒前
丁论文完成签到 ,获得积分10
5秒前
5秒前
ming830完成签到,获得积分10
6秒前
6秒前
6秒前
细腻砖头完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
李晨阳发布了新的文献求助10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
avalon应助科研通管家采纳,获得10
7秒前
avalon应助科研通管家采纳,获得10
7秒前
toutou应助科研通管家采纳,获得10
7秒前
7秒前
toutou应助科研通管家采纳,获得10
7秒前
帝国之花应助科研通管家采纳,获得10
7秒前
帝国之花应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770841
求助须知:如何正确求助?哪些是违规求助? 5587884
关于积分的说明 15425568
捐赠科研通 4904243
什么是DOI,文献DOI怎么找? 2638612
邀请新用户注册赠送积分活动 1586491
关于科研通互助平台的介绍 1541597