RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
TH完成签到 ,获得积分10
刚刚
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
欣慰元蝶应助科研通管家采纳,获得10
刚刚
老福贵儿应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
wml应助科研通管家采纳,获得10
刚刚
老福贵儿应助科研通管家采纳,获得10
刚刚
欣慰元蝶应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
hetao286发布了新的文献求助10
刚刚
shhoing应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
ZED完成签到,获得积分10
1秒前
顾瞻完成签到,获得积分10
1秒前
自由从筠发布了新的文献求助10
1秒前
科研八戒发布了新的文献求助10
1秒前
2秒前
包容小蝴蝶完成签到,获得积分10
2秒前
可了不得完成签到 ,获得积分10
2秒前
jiw发布了新的文献求助10
3秒前
liyingbo发布了新的文献求助10
3秒前
momo完成签到,获得积分10
3秒前
Assassion发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
moonlight完成签到,获得积分10
5秒前
lixiao完成签到,获得积分10
6秒前
thor发布了新的文献求助10
6秒前
6秒前
ding应助鳗鱼匕采纳,获得10
6秒前
风中的嚓茶完成签到,获得积分10
6秒前
CodeCraft应助123采纳,获得10
7秒前
lcj发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555414
求助须知:如何正确求助?哪些是违规求助? 4640095
关于积分的说明 14659158
捐赠科研通 4582118
什么是DOI,文献DOI怎么找? 2513067
邀请新用户注册赠送积分活动 1487811
关于科研通互助平台的介绍 1458798