RPMVCDA: Random Perturbation and Multi-View Graph Convolutional Networks for CircRNA-Disease Association Prediction

计算机科学 图形 随机图 摄动(天文学) 人工智能 理论计算机科学 物理 量子力学
作者
Xin He,Junliang Shang,Daohui Ge,Feng Li,Jin‐Xing Liu
标识
DOI:10.1109/tcbbio.2024.3506615
摘要

Numerous studies have demonstrated the regulatory role of circular RNA (circRNA) in various diseases, emphasizing the importance of identifying disease-related circRNAs. Although several computational models have been developed to predict circRNA-disease associations, the limited number of experimentally validated associations has resulted in the sparse association network. Therefore, there is a need for continuously improving circRNA-disease prediction models. In this study, we propose RPMVCDA, a computational model based on random perturbation and multi-view graph convolutional networks (GCNs), to predict circRNA-disease associations. Specifically, RPMVCDA first constructs multiple similarity networks of circRNAs and diseases, applying multi-view GCNs to obtain embedding representations. Second, to enable message passing between circRNA-disease samples, RPMVCDA constructs the feature similarity association network. Third, RPMVCDA introduces a random perturbation association network to further explore the potential associations, which is the highlight of the RPMVCDA. Finally, based on these three association networks, RPMVCDA utilizes the self-attention mechanism to generate high-quality features for circRNAs and diseases, which are used to calculate association scores. To evaluate the performance of RPMVCDA, five-fold cross-validation and case studies on the CircR2Disease dataset are performed, results of which shows that RPMVCDA outperforms the compared models, implying that it might be an alternative for predicting circRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东西南北完成签到,获得积分10
刚刚
肃肃其羽完成签到 ,获得积分10
1秒前
善良发带发布了新的文献求助10
2秒前
dwl完成签到 ,获得积分0
3秒前
3秒前
longjiafang发布了新的文献求助10
5秒前
科研通AI6应助QQWQEQRQ采纳,获得10
5秒前
5秒前
7秒前
的法国队完成签到,获得积分10
7秒前
7秒前
杨青青完成签到,获得积分20
8秒前
倪满分完成签到,获得积分10
8秒前
fxh发布了新的文献求助10
10秒前
10秒前
Wey完成签到,获得积分10
11秒前
管青青发布了新的文献求助30
11秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
范森林发布了新的文献求助10
14秒前
齐甲雯发布了新的文献求助10
14秒前
15秒前
15秒前
krislan完成签到,获得积分10
16秒前
16秒前
17秒前
LaTeXer应助炮灰史蒂夫采纳,获得50
18秒前
19秒前
苗条白枫完成签到 ,获得积分10
21秒前
honda发布了新的文献求助10
22秒前
22秒前
顺心晓筠完成签到,获得积分10
22秒前
刘文思完成签到,获得积分10
22秒前
23秒前
QQWQEQRQ发布了新的文献求助10
23秒前
7676发布了新的文献求助10
24秒前
24秒前
xiaoshuwang完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4816335
求助须知:如何正确求助?哪些是违规求助? 4126876
关于积分的说明 12770875
捐赠科研通 3865918
什么是DOI,文献DOI怎么找? 2127389
邀请新用户注册赠送积分活动 1148395
关于科研通互助平台的介绍 1043766