On the role of local reinforcement in an adhesively bonded AL/CFRP energy absorber under axial loading: A theoretical investigation and optimization

材料科学 钢筋 复合材料 能量(信号处理) 结构工程 工程类 物理 量子力学
作者
Reza Rahmani,Ali Keshavarzi,Hamed Saeidi Googarchin
出处
期刊:Polymer Composites [Wiley]
被引量:5
标识
DOI:10.1002/pc.29184
摘要

Abstract This paper aims to develop a novel theoretical model that incorporates the effects of local composite reinforcement using adhesive bonding on the energy absorption of aluminum structures under axial loading. The goal is to optimize energy absorption prior to any connection failures and to prevent uneven structural deformation. Moreover, it strives to reduce the structure's weight and material usage, achieving superior results compared to traditional global reinforcement techniques. The theoretical model was validated through experimental testing and finite element analysis, demonstrating good agreement with the predicted results. The results reveal that increasing the CFRP fiber angle, layer thickness, and number of layers generally leads to improved energy absorption capacity. An optimization analysis was performed to determine the optimal design parameters, yielding a fiber angle of 80°–90°, composite thickness of 1.5 mm, and aluminum thickness of 2.5 is the best configuration, offering the highest specific energy absorption and adequate peak load capacity for maximized energy absorption. The proposed model offers significant improvements over existing approaches, enhancing the predictive capabilities and practical applicability of energy absorption predictions in engineering design. Highlights A novel theoretical model for energy absorption in locally reinforced hybrid AL/CFRP structures. The influence of design parameters, such as CFRP layer count, fiber orientation, and thickness ratio. Optimization to maximize the average crushing force while meeting weight and geometric constraints. Findings can inform the design of safer and more efficient energy‐absorbing structures in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文静灵阳完成签到 ,获得积分10
2秒前
2秒前
LIKUN完成签到,获得积分10
2秒前
科研通AI5应助追寻梦之采纳,获得30
4秒前
4秒前
魔幻的语雪完成签到,获得积分10
5秒前
Migrol完成签到,获得积分10
5秒前
hang完成签到,获得积分10
5秒前
CDQ完成签到,获得积分10
5秒前
李健的小迷弟应助wlnhyF采纳,获得10
5秒前
酷波er应助xinyueyue采纳,获得10
6秒前
儒雅沛凝发布了新的文献求助10
6秒前
SY完成签到,获得积分10
6秒前
胡杨柳发布了新的文献求助10
7秒前
weiya发布了新的文献求助10
7秒前
Free完成签到,获得积分10
8秒前
萝卜卷心菜完成签到 ,获得积分10
8秒前
葱油饼完成签到 ,获得积分10
10秒前
long完成签到,获得积分10
10秒前
小伙子完成签到,获得积分0
11秒前
神勇烤鸡完成签到,获得积分10
11秒前
嗷嗷完成签到,获得积分10
12秒前
奔铂儿钯完成签到,获得积分10
13秒前
慧喆完成签到 ,获得积分10
13秒前
phoenix001完成签到,获得积分0
16秒前
17秒前
luz完成签到,获得积分10
17秒前
gudujian870928完成签到,获得积分10
19秒前
平凡完成签到,获得积分10
20秒前
图图完成签到,获得积分10
20秒前
wlnhyF完成签到,获得积分10
21秒前
朴素的不乐完成签到 ,获得积分10
21秒前
三石完成签到,获得积分10
23秒前
Clarence发布了新的文献求助10
23秒前
年少轻狂最情深完成签到 ,获得积分10
25秒前
tongkaibing完成签到,获得积分10
26秒前
老朱完成签到,获得积分10
27秒前
weiya完成签到,获得积分10
27秒前
waynechang完成签到,获得积分10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859