Large-Scale Plasma Proteomics Profiles for Predicting Ischemic Stroke Risk in the General Population

医学 弗雷明翰风险评分 内科学 人口 冲程(发动机) 优势比 队列 置信区间 队列研究 疾病 机械工程 环境卫生 工程类
作者
Xiaoqin Gan,Sisi Yang,Yuanyuan Zhang,Ziliang Ye,Yanjun Zhang,Hao Xiang,Yu Huang,Yiting Wu,Yiwei Zhang,Xianhui Qin
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:56 (2): 456-464 被引量:12
标识
DOI:10.1161/strokeaha.124.048654
摘要

BACKGROUND: We aimed to develop and validate a protein risk score for ischemic stroke (IS) risk prediction and to compare its predictive capability with IS clinical risk factors and IS polygenic risk score. METHODS: The prospective cohort study included 53 029 participants from UKB-PPP (UK Biobank Pharmaceutical Proteomics Project). IS protein risk score was calculated as the weighted sum of proteins selected by the least absolute shrinkage and selection operator regression. The discrimination ability of models was assessed by C statistic. IS risk factors included age, sex, smoking, waist-to-hip ratio, antihypertensive medication use, systolic and diastolic blood pressure, coronary heart disease, diabetes, total cholesterol/high-density lipoprotein cholesterol ratio, and estimated glomerular filtration rate. Polygenic risk score was computed using identified susceptibility variants. RESULTS: After exclusions, 38 060 participants from England were randomly divided into the training set and the internal validation set in a 7:3 ratio, and 4970 participants from Scotland/Wales were assigned as the external validation set. Of 43 030 participants included (mean age, 59.0 years; 54.0% female), 989 incident IS occurred during a median follow-up of 13.6 years. In the training set, IS protein risk score was constructed using 17 out of 2911 proteins. In the internal validation set, compared with the basic model (age and sex: C statistic,0.720 [95% CI, 0.691–0.749]), IS protein risk score had the highest predictive performance for IS risk (C statistic, 0.765 [95% CI, 0.736–0.793]), followed by clinical risk factors of IS (C statistic, 0.753 [95% CI, 0.725–0.781]), and IS polygenic risk score (C statistic, 0.730 [95% CI, 0.701–0.759]). The top 5 proteins with the largest absolute coefficients in the IS protein risk score, including GDF15 (growth/differentiation factor 15), PLAUR (urokinase plasminogen activator surface receptor), NT-proBNP (N-terminal pro-B-type natriuretic peptide), IGFBP4 (insulin-like growth factor-binding protein 4), and BCAN (brevican core protein), contributed most of the predictive ability of the IS protein risk score, with a cumulative C statistic of 0.761 (95% CI, 0.733–0.790). These results were verified in the external validation cohort. CONCLUSIONS: A simple model, including age, sex, and the IS protein risk score (or only the top 5 proteins) had a good predictive performance for IS risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VV完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
4秒前
weila完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
lsy完成签到,获得积分10
5秒前
shengdong完成签到,获得积分10
5秒前
诸青梦完成签到 ,获得积分10
7秒前
lky1017完成签到,获得积分10
8秒前
8秒前
快乐谷蓝完成签到,获得积分10
9秒前
你好你好完成签到 ,获得积分10
9秒前
LZH发布了新的文献求助10
10秒前
多肉丸子完成签到,获得积分10
10秒前
活泼的煎饼完成签到,获得积分10
11秒前
金少爷发布了新的文献求助10
12秒前
jojo完成签到 ,获得积分10
12秒前
快乐小海带完成签到,获得积分10
13秒前
科研的橘子完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
忐忑的草丛完成签到,获得积分10
15秒前
17秒前
yin完成签到,获得积分10
17秒前
皮皮团完成签到 ,获得积分10
19秒前
研友_842M4n发布了新的文献求助10
21秒前
嘎嘣脆完成签到 ,获得积分10
21秒前
研友_Lw7OvL发布了新的文献求助10
22秒前
英俊的铭应助js采纳,获得10
22秒前
别闹闹完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
GHL完成签到,获得积分10
24秒前
niu完成签到,获得积分10
24秒前
HCLonely完成签到,获得积分0
25秒前
SCI硬通货完成签到 ,获得积分10
25秒前
Milton_z完成签到 ,获得积分0
27秒前
27秒前
27秒前
冷冷暴力完成签到,获得积分10
27秒前
zzh完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900