Growth Prediction Model for Prepubertal Children With Idiopathic Growth Hormone Deficiency: An Analysis of LG Growth Study Data

医学 骨龄 生长激素 内科学 生长激素缺乏 儿科 体质指数 内分泌学 生长激素治疗 激素
作者
Hwal Rim Jeong,Hae Sang Lee,Soon‐Jin Hwang
出处
期刊:Clinical Endocrinology [Wiley]
卷期号:102 (3): 281-287
标识
DOI:10.1111/cen.15178
摘要

ABSTRACT Background Growth hormone (GH) treatment is effective in restoring normal growth in children with GH deficiency (GHD). However, individual responses to GH treatment vary, necessitating predictive models to estimate growth outcomes. This study aimed to develop and validate a predictive model for GH treatment response during the first 2 years in patients with idiopathic GHD using the LG growth study (LGS) database. Methods This observational study included 669 prepubertal patients with idiopathic GHD from the LGS registry who received GH treatment for at least 2 years. Clinical and laboratory data were collected at baseline and every 6 months thereafter. Stepwise multivariate regression analysis was performed to develop prediction models for the treatment period. Results The mean age of patients with GDH was 6.0 ± 1.8 years. Height standard deviation score (SDS) significantly increased from −2.50 ± 0.71 to −1.66 ± 0.71 in the first year and −1.35 ± 0.71 in the second year. The first‐year growth velocity was 9.06 ± 1.51 cm, decreasing to 7.42 ± 1.37 cm in the second year. The prediction models incorporated variables such as age, birth weight, bone age, initial height SDS, body mass index SDS, mid‐parental height, GH dose and first year of height after GH treatment, explaining 76.9% and 84.1% of the variability in height SDS changes in the first and second years, respectively. Conclusions GH treatment significantly improves height outcomes in prepubertal children with GHD. The developed predictive models demonstrated accuracy, facilitating personalized GH therapy. Future research should focus on refining these models and exploring the long‐term effects of GH treatment in pubertal patients. Trial Registration ClinicalTrials.gov identifier: NCT01604395.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静盼山发布了新的文献求助10
1秒前
在水一方应助KD采纳,获得10
1秒前
3秒前
Owen应助任浩采纳,获得10
3秒前
斯文败类应助晚棠采纳,获得10
3秒前
4秒前
万能图书馆应助鹿叽叽采纳,获得10
4秒前
噢噢完成签到,获得积分10
4秒前
CipherSage应助tjr8910采纳,获得10
4秒前
CipherSage应助qq大魔王采纳,获得10
4秒前
雪山飞龙发布了新的文献求助10
5秒前
5秒前
科目三应助海峰荣采纳,获得10
5秒前
科研通AI6应助sunlight采纳,获得10
5秒前
nation_You发布了新的文献求助10
5秒前
CodeCraft应助哎嘿采纳,获得10
6秒前
6秒前
项彼夜完成签到,获得积分10
6秒前
tian完成签到,获得积分10
6秒前
7秒前
超越俗尘发布了新的文献求助10
8秒前
8秒前
Sakura发布了新的文献求助10
8秒前
9秒前
二三发布了新的文献求助10
10秒前
10秒前
科研通AI6应助666采纳,获得10
11秒前
zhou完成签到,获得积分10
11秒前
彭于晏应助yangxt-iga采纳,获得10
11秒前
di完成签到,获得积分10
12秒前
12秒前
zzulyy发布了新的文献求助10
12秒前
whoami完成签到,获得积分10
12秒前
玛卡巴卡发布了新的文献求助10
13秒前
Wang发布了新的文献求助10
13秒前
13秒前
14秒前
小古发布了新的文献求助10
14秒前
tianyue发布了新的文献求助10
15秒前
Qi齐发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708