Ultrafast neuromorphic computing with nanophotonic optical parametric oscillators

神经形态工程学 超短脉冲 纳米光子学 参数统计 计算机科学 光电子学 物理 光学 人工神经网络 人工智能 激光器 数学 统计
作者
Midya Parto,Gordon H. Y. Li,Ryoto Sekine,Robert M. Gray,Luis L. Ledezma,James Williams,Arkadev Roy,Alireza Marandi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.16604
摘要

Over the past decade, artificial intelligence (AI) has led to disruptive advancements in fundamental sciences and everyday technologies. Among various machine learning algorithms, deep neural networks have become instrumental in revealing complex patterns in large datasets with key applications in computer vision, natural language processing, and predictive analytics. On-chip photonic neural networks offer a promising platform that leverage high bandwidths and low propagation losses associated with optical signals to perform analog computations for deep learning. However, nanophotonic circuits are yet to achieve the required linear and nonlinear operations simultaneously in an all-optical and ultrafast fashion. Here, we report an ultrafast nanophotonic neuromorphic processor using an optical parametric oscillator (OPO) fabricated on thin-film lithium niobate (TFLN). The input data is used to modulate the optical pulses synchronously pumping the OPO. The consequent signal pulses generated by the OPO are coupled to one another via the nonlinear delayed dynamics of the OPO, thus forming the internal nodes of a deep recurrent neural network. We use such a nonlinearly coupled OPO network for chaotic time series prediction, nonlinear error correction in a noisy communication channel, as well as noisy waveform classification and achieve accuracies exceeding 93% at an operating clock rate of ~ 10 GHz. Our OPO network is capable of achieving sub-nanosecond latencies, a timescale comparable to a single clock cycle in state-of-the-art digital electronic processors. By circumventing the need for optical-electronic-optical (OEO) conversions, our ultrafast nanophotonic neural network paves the way for the next generation of compact all-optical neuromorphic processors with ultralow latencies and high energy efficiencies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小可爱完成签到 ,获得积分10
刚刚
ssx完成签到,获得积分10
刚刚
上善若水发布了新的文献求助10
刚刚
cheng完成签到,获得积分10
1秒前
1秒前
李健应助贾舒涵采纳,获得10
1秒前
xff发布了新的文献求助10
2秒前
Liuuhhua完成签到,获得积分10
2秒前
Haterain完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
整齐冰凡发布了新的文献求助10
5秒前
义气山水发布了新的文献求助10
6秒前
7秒前
小周发布了新的文献求助10
8秒前
共享精神应助boshi采纳,获得10
8秒前
隐形曼青应助花痴的幻儿采纳,获得10
8秒前
8秒前
8秒前
淡然的筝发布了新的文献求助10
9秒前
lanmo完成签到,获得积分10
9秒前
隐形曼青应助hbb采纳,获得10
11秒前
zpq发布了新的文献求助10
11秒前
直觉完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
WuHong发布了新的文献求助10
13秒前
清风发布了新的文献求助10
13秒前
何香香能吃苦完成签到,获得积分10
14秒前
嘤嘤嘤发布了新的文献求助10
14秒前
zycdx3906发布了新的文献求助10
14秒前
14秒前
15秒前
JY发布了新的文献求助10
16秒前
16秒前
18秒前
lvjiahui发布了新的文献求助10
18秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Limited Prognostic Value of Pretreatment Neutrophil-to-Lymphocyte Ratios in Elderly Patients with Multiple Myeloma 200
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833093
求助须知:如何正确求助?哪些是违规求助? 3375551
关于积分的说明 10489469
捐赠科研通 3095145
什么是DOI,文献DOI怎么找? 1704250
邀请新用户注册赠送积分活动 819892
科研通“疑难数据库(出版商)”最低求助积分说明 771671