High-Entropy Oxides: Pioneering the Future of Multifunctional Materials

纳米技术 材料科学
作者
Jingyun Zou,Lei Tang,Weiwei He,Xiaohua Zhang
出处
期刊:ACS Nano [American Chemical Society]
被引量:12
标识
DOI:10.1021/acsnano.4c12538
摘要

The high-entropy concept affords an effective method to design and construct customized materials with desired characteristics for specific applications. Extending this concept to metal oxides, high-entropy oxides (HEOs) can be fabricated, and the synergistic elemental interactions result in the four core effects, i.e., the high-entropy effect, sluggish-diffusion effect, severe-lattice-distortion effect, and cocktail effect. All these effects greatly enhance the functionalities of this vast material family, surpassing conventional low- and medium-entropy metal oxides. For instance, the high phase stability, excellent electrochemical performance, and fast ionic conductivity make HEOs one of the hot next-generation candidate materials for electrochemical energy conversion and storage devices. Significantly, the extraordinary mechanical, electrical, optical, thermal, and magnetic properties of HEOs are very attractive for applications beyond catalysts and batteries, such as electronic devices, optic equipment, and thermal barrier coatings. This review will overview the entropy-stabilized composition and structure of HEOs, followed by a comprehensive introduction to the electrical, optical, thermal, and magnetic properties. Then, several typical applications, i.e., transistor, memristor, artificial synapse, transparent glass, photodetector, light absorber and emitter, thermal barrier coating, and cooling pigment, are synoptically presented to show the broad application prospect of HEOs. Lastly, the intelligence-guided design and high-throughput screening of HEOs are briefly introduced to point out future development trends, which will become powerful tools to realize the customized design and synthesis of HEOs with optimal composition, structure, and performance for specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级诗桃完成签到,获得积分10
2秒前
喜悦的哇关注了科研通微信公众号
3秒前
诚心外绣完成签到,获得积分20
5秒前
5秒前
6秒前
超级诗桃发布了新的文献求助10
6秒前
华仔应助星大星采纳,获得10
6秒前
李健的小迷弟应助冥月采纳,获得10
7秒前
DORA发布了新的文献求助10
7秒前
认真丹烟完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
TAMIYA发布了新的文献求助30
10秒前
从容的寒安完成签到,获得积分20
10秒前
振子发布了新的文献求助10
11秒前
11秒前
Hum6le完成签到,获得积分10
11秒前
12秒前
天涯发布了新的文献求助10
13秒前
细腻的秋发布了新的文献求助10
13秒前
13秒前
15秒前
Suagy发布了新的文献求助30
16秒前
16秒前
16秒前
青青儿发布了新的文献求助10
16秒前
聪明铸海完成签到,获得积分10
17秒前
木木发布了新的文献求助10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
42完成签到 ,获得积分10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4691191
求助须知:如何正确求助?哪些是违规求助? 4062810
关于积分的说明 12562249
捐赠科研通 3760697
什么是DOI,文献DOI怎么找? 2077054
邀请新用户注册赠送积分活动 1105705
科研通“疑难数据库(出版商)”最低求助积分说明 984306