Oocyte Microscopic Image Fertilization Prediction based on First Polar Body Morphology using YOLOv8

卵母细胞 极体 形态学(生物学) 人类受精 极地的 图像(数学) 计算机科学 人工智能 细胞生物学 解剖 生物 物理 动物 胚胎 天文
作者
Thanakorn Sappakit,Krittapat Onthuam,Tinapat Limsila,Ronnapee Chaichaowarat,Chanakarn Suebthawinkul
标识
DOI:10.1109/embc53108.2024.10782265
摘要

The development of oocytes is crucial in the development and fertility of embryos in In Vitro Fertilization (IVF). There are several internal and external factors that could affect the fertilization competency of oocytes, one of which is the first polar body (PBI). However, there is still a debate regarding the influence of PBI on the developmental competency of oocytes. This work aims to find the correlation of the successful fertilization in which the mature oocyte develops into the stage of two pronuclei (2PN) by using You Only Look Once (YOLO), which is a type of Convolutional Neural Network (CNN) widely applied to medical imaging problems. Our pipeline consists of exclusive segmentation CNN and classification CNN. First, light microscopic images of oocytes in the metaphase of meiosis II (MII) stage are captured, followed by the prediction of the likelihood of 2PN development after fertilization through intracytoplasmic sperm injection (ICSI). The image has its PBI segmented by the CNN and then cropped out of the original image. The PBI image is then fed into the prediction CNN to obtain the final result. The experiment showed that the best model is YOLOv8l-cls, trained on a dataset of 1006 images, with the top accuracy at 96.98% accuracy, 95.69% sensitivity and 98.28% specificity. Furthermore, the ability of the model to predict without any additional features indicates the correlation between the PBI and the development tendency of oocytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fall发布了新的文献求助10
1秒前
1秒前
jj158发布了新的文献求助10
1秒前
夹夹发布了新的文献求助10
2秒前
微风打了烊完成签到 ,获得积分10
2秒前
123123完成签到,获得积分10
2秒前
minus完成签到,获得积分10
3秒前
wangxianjin20完成签到,获得积分10
3秒前
科研通AI2S应助亨特采纳,获得10
3秒前
Aurora完成签到,获得积分10
3秒前
3秒前
4秒前
灵巧的采蓝完成签到,获得积分20
4秒前
科研通AI5应助yeye采纳,获得10
5秒前
yangyang完成签到,获得积分10
5秒前
一帆风顺发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
细心可乐完成签到,获得积分10
7秒前
gt完成签到 ,获得积分10
7秒前
lei.qin完成签到 ,获得积分10
8秒前
丘比特应助ccccc1998采纳,获得10
8秒前
含蓄的荔枝完成签到,获得积分10
8秒前
Likx完成签到,获得积分10
8秒前
Grinder发布了新的文献求助10
8秒前
8秒前
niao发布了新的文献求助10
9秒前
Ray完成签到,获得积分10
9秒前
Richardisme完成签到,获得积分10
9秒前
10秒前
孤独听雨的猫完成签到 ,获得积分10
10秒前
Ava应助SuXuan采纳,获得10
11秒前
清新的安波完成签到,获得积分10
12秒前
我是老大应助历史真相采纳,获得10
12秒前
12秒前
12秒前
13秒前
lin完成签到,获得积分10
13秒前
sdzl完成签到,获得积分10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841198
求助须知:如何正确求助?哪些是违规求助? 3383176
关于积分的说明 10528587
捐赠科研通 3103166
什么是DOI,文献DOI怎么找? 1709180
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773733