A SAM-guided Two-stream Lightweight Model for Anomaly Detection

计算机科学 异常检测 实时计算 数据挖掘
作者
Chenghao Li,Lei Qi,Xin Geng
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:6
标识
DOI:10.1145/3706574
摘要

In industrial anomaly detection, model efficiency and mobile-friendliness become the primary concerns in real-world applications. Simultaneously, the impressive generalization capabilities of Segment Anything (SAM) have garnered broad academic attention, making it an ideal choice for localizing unseen anomalies and diverse real-world patterns. In this paper, considering these two critical factors, we propose a SAM-guided Two-stream Lightweight Model for unsupervised anomaly detection (STLM) that not only aligns with the two practical application requirements but also harnesses the robust generalization capabilities of SAM. We employ two lightweight image encoders, i.e. , our two-stream lightweight module, guided by SAM's knowledge. To be specific, one stream is trained to generate discriminative and general feature representations in both normal and anomalous regions, while the other stream reconstructs the same images without anomalies, which effectively enhances the differentiation of two-stream representations when facing anomalous regions. Furthermore, we employ a shared mask decoder and a feature aggregation module to generate anomaly maps. Our experiments conducted on MVTec AD benchmark show that STLM, with about 16M parameters and achieving an inference time in 20ms, competes effectively with state-of-the-art methods in terms of performance, 98.26% on pixel-level AUC and 94.92% on PRO. We further experiment on more difficult datasets, e.g. , VisA and DAGM, to demonstrate the effectiveness and generalizability of STLM. Codes are available online at https://github.com/Qi5Lei/STLM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的猪发布了新的文献求助10
1秒前
小二郎应助cocj采纳,获得10
2秒前
俞安珊完成签到,获得积分10
2秒前
惊鸿完成签到 ,获得积分10
2秒前
浮游应助子星采纳,获得10
2秒前
3秒前
zr完成签到,获得积分10
4秒前
清风_breeze发布了新的文献求助10
4秒前
4秒前
小秦秦完成签到,获得积分10
5秒前
6秒前
玄月支发布了新的文献求助10
6秒前
颖南婉发布了新的文献求助10
7秒前
xzy998应助Ohhruby采纳,获得10
7秒前
CES_SH发布了新的文献求助30
7秒前
英俊的铭应助清风_breeze采纳,获得10
8秒前
9秒前
王艺霖发布了新的文献求助10
9秒前
猫小猪完成签到,获得积分10
10秒前
小秦秦发布了新的文献求助10
10秒前
UP发布了新的文献求助10
10秒前
李贺完成签到,获得积分10
10秒前
11秒前
Komorebi完成签到 ,获得积分10
11秒前
13秒前
浮游应助无梦为安采纳,获得10
14秒前
猫小猪发布了新的文献求助10
14秒前
彭于彦祖应助可靠的寒风采纳,获得20
16秒前
16秒前
Sera发布了新的文献求助10
16秒前
18秒前
hakunamatata完成签到 ,获得积分10
19秒前
深情安青应助王艺霖采纳,获得10
19秒前
Drlee发布了新的文献求助10
19秒前
Ds应助倪倪采纳,获得10
20秒前
陈笨笨发布了新的文献求助10
21秒前
华仔应助hanchangcun采纳,获得10
21秒前
ccm应助yanny采纳,获得10
23秒前
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4750548
求助须知:如何正确求助?哪些是违规求助? 4096580
关于积分的说明 12674367
捐赠科研通 3809012
什么是DOI,文献DOI怎么找? 2102894
邀请新用户注册赠送积分活动 1128167
关于科研通互助平台的介绍 1004882