清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI‐Based Adaptive Feedback in Simulations for Teacher Education: An Experimental Replication in the Field

复制(统计) 领域(数学) 计算机科学 多媒体 计算机辅助教学 教师教育 数学教育 心理学 数学 统计 纯数学
作者
Elisabeth Bauer,Michael Sailer,Frank Niklas,Samuel Greiff,Sven Sarbu‐Rothsching,Jan Zottmann,Jan Kiesewetter,Matthias Stadler,Martin R. Fischer,Tina Seidel,Detlef Urhahne,Maximilian Sailer,Frank Fischer
出处
期刊:Journal of Computer Assisted Learning [Wiley]
卷期号:41 (1)
标识
DOI:10.1111/jcal.13123
摘要

ABSTRACT Background Artificial intelligence, particularly natural language processing (NLP), enables automating the formative assessment of written task solutions to provide adaptive feedback automatically. A laboratory study found that, compared with static feedback (an expert solution), adaptive feedback automated through artificial neural networks enhanced preservice teachers' diagnostic reasoning in a digital case‐based simulation. However, the effectiveness of the simulation with the different feedback types and the generalizability to field settings remained unclear. Objectives We tested the generalizability of the previous findings and the effectiveness of a single simulation session with either feedback type in an experimental field study. Methods In regular online courses, 332 preservice teachers at five German universities participated in one of three randomly assigned groups: (1) a simulation group with NLP‐based adaptive feedback, (2) a simulation group with static feedback and (3) a no‐simulation control group. We analysed the effect of the simulation with the two feedback types on participants' judgement accuracy and justification quality. Results and Conclusions Compared with static feedback, adaptive feedback significantly enhanced justification quality but not judgement accuracy. Only the simulation with adaptive feedback significantly benefited learners' justification quality over the no‐simulation control group, while no significant differences in judgement accuracy were found. Our field experiment replicated the findings of the laboratory study. Only a simulation session with adaptive feedback, unlike static feedback, seems to enhance learners' justification quality but not judgement accuracy. Under field conditions, learners require adaptive support in simulations and can benefit from NLP‐based adaptive feedback using artificial neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
文学痞发布了新的文献求助10
27秒前
文学痞完成签到,获得积分10
39秒前
52秒前
SL发布了新的文献求助10
56秒前
Ji完成签到,获得积分10
1分钟前
健康的大船完成签到 ,获得积分10
2分钟前
SL完成签到,获得积分10
2分钟前
bubble完成签到 ,获得积分10
2分钟前
Young完成签到 ,获得积分10
2分钟前
liguanyu1078完成签到,获得积分10
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
4分钟前
春风沂水完成签到,获得积分10
4分钟前
zzxx完成签到,获得积分10
4分钟前
科研通AI5应助春风沂水采纳,获得10
4分钟前
林梓完成签到 ,获得积分10
5分钟前
华仔应助科研通管家采纳,获得10
6分钟前
高高的从波完成签到,获得积分10
7分钟前
7分钟前
Hygge发布了新的文献求助10
7分钟前
zyjsunye完成签到 ,获得积分0
7分钟前
lyx2010完成签到,获得积分10
7分钟前
稻子完成签到 ,获得积分10
8分钟前
田様应助科研通管家采纳,获得10
8分钟前
在水一方应助科研通管家采纳,获得10
8分钟前
JSEILWQ完成签到 ,获得积分10
8分钟前
9分钟前
Hello应助天空之城采纳,获得10
9分钟前
10分钟前
天空之城发布了新的文献求助10
10分钟前
脑洞疼应助科研通管家采纳,获得10
10分钟前
11分钟前
anitachiu1104发布了新的文献求助10
11分钟前
实力不允许完成签到 ,获得积分10
11分钟前
12分钟前
12分钟前
YifanWang应助科研通管家采纳,获得20
12分钟前
李健应助13508104971采纳,获得10
12分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3323001
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229